Skip to main content

Impact of Fc Glycosylation on Monoclonal Antibody Effector Functions and Degradation by Proteases

  • Chapter
  • First Online:

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

IgGs are required to be N-glycosylated in the CH2 domain of the Fc to exhibit effector functions including antibody dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). This is because Fc glycosylation impacts antibody binding to Fc receptors and complement activating protein, C1q. Glycans found in the Fc are mainly complex biantennary structures with a high degree of heterogeneity containing different terminal sugars including sialic acid, galactose, N-acetylglucosamine and core fucose. Different terminal sugars may dramatically affect ADCC and CDC activities of antibodies. For example, absence of terminal sialic acid and/or core fucose results in significant increase in ADCC activity. Similarly, presence of bisecting N-acetylglucosamine residues also results in increased ADCC activity. Further, increase in terminal galactose content increases CDC activity but does not appear to affect ADCC activity. Additionally, Fc glycans may also affect antibody resistance to proteases. For example, glycosylated IgGs have been shown to be more resistant to papain digestions when compared to their aglycosylated or deglycosylated counterparts. In addition, presence or the absence of specific terminal sugars may also impact IgGs resistance to proteases. More recent data revealed that IgGs containing terminal N-acetylglucosamine residues are more resistant to papain digestions than the IgGs containing terminal sialic acid residues or terminal galactose residues. Hence, it appears that Fc glycans may play important roles in antibody stability and affect resistance to proteases in addition to impacting antibody effector functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alavi A, Axford J (1995) Evaluation of beta 1,4-galactosyltransferase in rheumatoid arthritis and its role in the glycosylation network associated with this disease. Glycoconj J 12:206–210

    Article  PubMed  CAS  Google Scholar 

  • Andersen DC, Bridges T, Gawlitzek M, Hoy C (2000) Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70(1):25–31

    Article  PubMed  CAS  Google Scholar 

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  PubMed  CAS  Google Scholar 

  • Bennett KL, Smith SV, Truscott RJ, Sheil MM (1997) Monitoring papain digestion of a monoclonal antibody by electrospray ionization mass spectrometry. Anal Biochem 245:17–27

    Article  PubMed  CAS  Google Scholar 

  • Braisted AC, Wells JA (1996) Minimizing a binding domain from protein A. Proc Natl Acad Sci USA 93(12):5688–5692

    Article  PubMed  CAS  Google Scholar 

  • Burton DR, Boyd J, Brampton AD, Easterbrook S, Emanuel EJ, Novotny J, Rademacher TW, van Schravendijk MR, Sternberg MJ, Dwek RA (1980) The Clq receptor site on immunoglobulin G. Nature 288(5789):338–344

    Article  PubMed  CAS  Google Scholar 

  • Campbell C, Stanley P (1984) A dominant mutation to ricin resistance in chinese hamster ovary cells induces UDP-GlcNAc: Glycopeptide beta-4-N-acetylglucosaminyltransferase-III activity. J Biol Chem 259(21):13370–13378

    PubMed  CAS  Google Scholar 

  • Chuang PD, Morrison SL (1997) Elimination of N-linked glycosylation sites from the human IgA1 constant region: Effects on structure and function. J Immunol 158:724–732

    PubMed  CAS  Google Scholar 

  • Corper AL, Sohi MK, Bonagura VR, Steinitz M, Jefferis R, Feinstein A, Beale D, Taussig MJ, Sutton BJ (1997) Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody–antigen interaction. Nat Struct Biol 4(5):374–381

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnT-III in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for Fc gamma RIII. Biotechnol Bioeng 74(4):288–294

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of Protein A from Staphylococcus aureus at 2.9Å and 2.8Å resolution. Biochemistry 20(9):2361–2370

    Article  PubMed  CAS  Google Scholar 

  • Dorai H, Li K, Huang CC, Bittner A, Galindo J, Carmen A (2007) Genome-wide analysis of mouse myeloma cell lines expressing therapeutic antibodies. Biotechnol Prog 33(4):911–920

    Google Scholar 

  • Duncan AR, Winter G (1988) The binding site for C1q on IgG. Nature 332(6166):738–740

    Article  PubMed  CAS  Google Scholar 

  • Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ (1969) The covalent structure of an entire gammaG Immunoglobulin molecule. Proc Natl Acad Sci USA 63(1):78–85

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Oda O, Yamanaka N, Maeda K, Yoshida M, Kobata A (1993) Alterations in the carbohydrate structures of an abnormal protein from sera of patients with rheumatoid arthritis. Arch Biochem Biophys 307(1):119–125

    Article  PubMed  CAS  Google Scholar 

  • Field MC, Amatayakul C, Rademacher TW, Rudd PM, Dwek RA (1994) Structural analysis of the N-glycans from human immunoglobulin A1: Comparison of normal human serum immunoglobulin A1 with that isolated from patients with rheumatoid arthritis. Biochem J 299(Pt 1):261–275

    PubMed  CAS  Google Scholar 

  • Galili U (1999) Evolution of alpha 1,3-galactosyltransferase and of the alpha-gal epitope. Subcell Biochem 32:1–23

    Article  PubMed  CAS  Google Scholar 

  • Ghirlando R, Lund J, Goodall M, Jefferis R (1999) Glycosylation of human IgG-Fc: Influences on structure revealed by differential scanning micro-calorimetry. Immunol Lett 68(1):47–52

    Article  PubMed  CAS  Google Scholar 

  • Gilhespy M, Partridge J, Jefferis R, Homans SW (1994) A novel 13C isotopic labeling strategy for probing the structure and dynamics of glycan chains in situ on glycoproteins. Glycobiology 4(4):485–489

    Article  Google Scholar 

  • Hamako J, Matsui T, Ozeki Y, Mizuochi T, Titani K (1993) Comparative studies of asparagine-linked sugar chains of immunoglobulin G from eleven mammalian species. Comp Biochem Physiol B 106(4):949–954

    PubMed  CAS  Google Scholar 

  • Hess JL, Porsch EA, Shertz CA, Boyle MD (2007) Immunoglobulin cleavage by the streptococcal cysteine protease IdeS can be detected using Protein G capture and mass spectrometry. J Microbiol Methods 70(2):284–291

    Article  PubMed  CAS  Google Scholar 

  • Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21(6):1644–1652

    Article  PubMed  CAS  Google Scholar 

  • Jassal R, Jenkins N, Charlwood J, Camilleri P, Jefferis R, Lund J (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2, 6-sialyltransferase. Biochem Biophys Res Commun 286(2):243–249

    Article  PubMed  CAS  Google Scholar 

  • Jefferis R (1991) Structure–function relationships in human immunoglobulins. Neth J Med 39(3–4):188–198

    PubMed  CAS  Google Scholar 

  • Jefferis R (1993) The glycosylation of antibody molecules: Functional significance. Glycoconj J 10(5):358–361

    PubMed  CAS  Google Scholar 

  • Kageyama Y, Miyamoto S, Ozeki T, Hiyohsi M, Suzuki M, Nagano A (2000) Levels of rheumatoid factor isotypes, metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in synovial fluid from various arthritides. Clin Rheumatol 19:14–20

    Article  PubMed  CAS  Google Scholar 

  • Kelley RF, O’Connell MP, Carter P, Presta L, Eigenbrot C, Covarrubias M, Snedecor B, Bourell JH, Vetterlein D (1992) Antigen binding thermodynamics and antiproliferative effects of chimeric and humanized anti-P185HER2 antibody Fab fragments. Biochemistry 31(24):5434–5441

    Article  PubMed  CAS  Google Scholar 

  • Keusch J, Lydyard PM, Isenberg DA, Delves PJ (1995) β1,4-Galactosyltransferase activity in B cells detected using a simple ELISA-based assay. Glycobiology 5:365–370

    Article  PubMed  CAS  Google Scholar 

  • Kobata A (2000) A journey to the world of glycobiology. Glycoconj J 17:443–464

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  PubMed  CAS  Google Scholar 

  • Kotajima L, Aotsuka S, Fujimani M, Okawa-Takatsuji M, Kinoshita M, Sumiya M, Obata K (1998) Increased levels of matrix metalloproteinase-3 in sera from patients with active lupus nephritis. Clin Exp Rheumatol 16:409–415

    PubMed  CAS  Google Scholar 

  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325(5):979–989

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

    Article  PubMed  CAS  Google Scholar 

  • Liu AY, Robinson RR, Hellstrom KE, Murray ED, Chang CP, Hellstrom I (1987) Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci USA 84(10):3439–3443

    Article  PubMed  CAS  Google Scholar 

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237–243

    Article  PubMed  CAS  Google Scholar 

  • Mimura Y, Lund J, Church S, Dong S, Li J, Goodall M, Jefferis R (2001a) Butyrate increases production of human chimeric IGg in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247(1–2):205–216

    Article  PubMed  CAS  Google Scholar 

  • Mimura Y, Ghirlando R, Sondermann P, Lund J, Jefferis R (2001b) The molecular specificity of IgG-Fc interactions with Fc gamma receptors. Adv Exp Med Biol 495:49–53

    Article  PubMed  CAS  Google Scholar 

  • Mizuochi T, Taniguchi T, Shimizu A, Kobata A (1982) Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. J Immunol 129(5):2016–2020

    PubMed  CAS  Google Scholar 

  • Morrison SL, Mohammed MS, Wims LA, Trinh R, Etches R (2002) Sequences in antibody molecules important for receptor-mediated transport into the chicken egg yolk. Mol Immunol 38(8):619–625

    Article  PubMed  CAS  Google Scholar 

  • Opdenakker G, Dillen C, Fiten P, Martens E, Van Aelst I, Van den Steen PE, Nelissen I, Starckx S, Descamps FJ, Hu J, Piccard H, Van Damme J, Wormald MR, Rudd PM, Dwek RA (2006) Remnant epitopes, autoimmunity and glycosylation. Biochim Biophys Acta 1760(4):610–615

    Article  PubMed  CAS  Google Scholar 

  • Parekh RB, Dwek RA, Rudd PM, Thomas JR, Rademacher TW, Warren T, Wun TC, Hebert B, Reitz B, Palmier M, Ramabhadran T, Tiemeier DC (1989) N-Glycosylation and in vitro enzymatic activity of human recombinant tissue plasminogen activator expressed in chinese hamster ovary cells and a murine cell line. Biochemistry 28(19):7670–7679

    Article  PubMed  CAS  Google Scholar 

  • Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM (1999) Transgenic milk as a method for the production of recombinant antibodies. J Immunol Methods 231(1–2):147–157

    Article  PubMed  CAS  Google Scholar 

  • Popko J, Marciniak J, Zalewska A, Maldyk P, Rogalski M, Zwierz K (2006) The activity of exoglycosidases in the synovial membrane and knee fluid of patients with rheumatoid arthritis and juvenile idiopathic arthritis. Scand J Rheumatol 35(3):189–192

    Article  PubMed  CAS  Google Scholar 

  • Presta LG (2002) Engineering antibodies for therapy. Curr Pharm Biotechnol 3(3):237–256

    Article  PubMed  CAS  Google Scholar 

  • Presta LG (2006) Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 58(5–6):640–656

    Article  PubMed  CAS  Google Scholar 

  • Presta L (2007) Evolving an anti-toxin antibody. Nat Biotechnol 25(1):63–65

    Article  PubMed  CAS  Google Scholar 

  • Rademacher TW, Homans SW, Parekh RB, Dwek RA (1986) Immunoglobulin G as a glycoprotein. Biochem Soc Symp 51:131–148

    PubMed  CAS  Google Scholar 

  • Rademacher TW, Jones RH, Williams PJ (1995) Significance and molecular basis for IgG glycosylation changes in rheumatoid arthritis. Adv Exp Med Biol 376:193–204

    Article  PubMed  CAS  Google Scholar 

  • Raju TS (2003) Glycosylation variations with expression systems and their impact on biological activity of therapeutic immunoglobulins. BioProcess Int 1(4):44–53

    CAS  Google Scholar 

  • Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20(4):471–478

    Article  PubMed  CAS  Google Scholar 

  • Raju TS, Scallon BJ (2006) Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun 341(3):797–803

    Article  PubMed  CAS  Google Scholar 

  • Raju TS, Scallon B (2007) Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog 33(4):964–971

    Google Scholar 

  • Raju TS, Lerner L, O’Connor JV (1996) Glycopinion: Biological significance and methods for the analysis of complex carbohydrates of recombinant glycoproteins. Biotechnol Appl Biochem 24(Pt 3):191–194

    PubMed  CAS  Google Scholar 

  • Raju TS, Briggs JB, Borge SM, Jones AJ (2000) Species-specific variation in glycosylation of IgG: Evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5):477–486

    Article  PubMed  CAS  Google Scholar 

  • Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJ (2001) Glycoengineering of therapeutic glycoproteins: In vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40(30):8868–8876

    Article  PubMed  CAS  Google Scholar 

  • Rifai A, Fadden K, Morrison SL, Chintalacharuvu KR (2000) The N-Glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes. J Exp Med 191(12):2171–2182

    Article  PubMed  CAS  Google Scholar 

  • Ritchie GE, Moffatt BE, Sim RB, Morgan BP, Dwek RA, Rudd PM (2002) Glycosylation and the complement system. Chem Rev 102(2):305–319

    Article  PubMed  CAS  Google Scholar 

  • Routier FH, Davies MJ, Bergemann K, Hounsell EF (1997) The glycosylation pattern of humanized IgGI antibody (D1.3) expressed in CHO cells. Glycoconj J 14(2):201–207

    Article  PubMed  CAS  Google Scholar 

  • Routier FH, Hounsell EF, Rudd PM, Takahashi N, Bond A, Hay FC, Alavi A, Axford JS, Jefferis R (1998) Quantitation of the oligosaccharides of human serum IgG from patients with rheumatoid arthritis: A critical evaluation of different methods. J Immunol Methods 213(2):113–130

    Article  PubMed  CAS  Google Scholar 

  • Rudd PM, Leatherbarrow RJ, Rademacher TW, Dwek RA (1991) Diversification of the IgG molecule by oligosaccharides. Mol Immunol 28(12):1369–1378

    Article  PubMed  CAS  Google Scholar 

  • Sauer E, Kleywegt GJ, Uhlen M, Jones TA (1995) Crystal structure of the C2 fragment of streptococcal Protein G in complex with the Fc domain of human IgG. Structure 3(3):265–278

    Article  Google Scholar 

  • Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007a) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534

    Article  PubMed  CAS  Google Scholar 

  • Scallon B, McCarthy S, Radewonuk J, Cai A, Naso M, Raju TS, Capocasale R (2007b) Quantitative in vivo comparisons of the Fc gamma receptor-dependent agonist activities of different fucosylation variants of an immunoglobulin G antibody. Int Immunopharmacol 7(6):761–772

    Article  PubMed  CAS  Google Scholar 

  • Schachter H (1974) The subcellular sites of glycosylation. Biochem Soc Symp 40:57–71

    PubMed  CAS  Google Scholar 

  • Schachter H (1984) Glycoproteins: Their structure, biosynthesis and possible clinical implications. Clin Biochem 17(1):3–14

    Article  PubMed  CAS  Google Scholar 

  • Schachter H (1986a) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Adv Exp Med Biol 205:53–85

    Article  PubMed  CAS  Google Scholar 

  • Schachter H (1986b) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64(3):163–181

    Article  PubMed  CAS  Google Scholar 

  • Schachter H (2000) The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J 17(7–9):465–483

    Article  PubMed  CAS  Google Scholar 

  • Shah P, Reece-Ford M, Dong S, Goodall M, Pidaparthi S, Jefferis R, Jenkins N (1998) Physiological influences on recombinant IgG glycosylation. Biochem Soc Trans 26(2):S114

    Google Scholar 

  • Shields RL, Lai J, Keck R, Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740

    Article  PubMed  CAS  Google Scholar 

  • Simonson T, Brunger AT (1992) Thermodynamics of protein-peptide interactions in the ribonuclease-S system studied by molecular dynamics and free energy calculations. Biochemistry 31(36):8661–8674

    Article  PubMed  CAS  Google Scholar 

  • Spiegelberg HL, Dainer PM (1979) Fc receptors for IgG, IgM and IgE on human leukaemic lymphocytes. Clin Exp Immunol 35(2):286–295

    PubMed  CAS  Google Scholar 

  • Stanley P, Raju TS, Bhaumik M (1996) CHO cells provide access to novel Nglycans and developmentally regulated glycosyltransferases. Glycobiology 6(7):695–699

    Article  PubMed  CAS  Google Scholar 

  • Starovasnik MA, Braisted AC, Wells JA (1997) Structural mimicry of a native protein by a minimized binding domain. Proc Natl Acad Sci USA 94(19):10080–10085

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Ishii I, Ishihara H, Mori M, Tejima S, Jefferis R, Endo S, Arata Y (1987) Comparative structural study of the N-linked oligosaccharides of human normal and pathological immunoglobulin G. Biochemistry 26(4):1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Tao MH, Morrison SL (1989) Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol 143(8):2595–2601

    PubMed  CAS  Google Scholar 

  • Tishchenko VM (1998) Effect of immunoglobulin G1 Pro 290 residue on structural and biological characteristics of its SH2 domain. Bioorg Khim 24(6):465–467

    PubMed  CAS  Google Scholar 

  • Tsuchiya N, Endo T, Shiota M, Kochibe N, Ito K, Kobata A (1994) Distribution of glycosylation abnormality among serum IgG subclasses from patients with rheumatoid arthritis. Clin Immunol Immunopathol 70(1):47–50

    Article  PubMed  CAS  Google Scholar 

  • Umana P, Jean M, Bailey JE (1999a) Tetracycline-regulated over expression of glycosyltransferases in chinese hamster ovary cells. Biotechnol Bioeng 65(5):542–549

    Article  PubMed  CAS  Google Scholar 

  • Umana P, Jean M, Moudry R, Amstutz H, Bailey JE (1999b) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180

    Article  PubMed  CAS  Google Scholar 

  • Vanhove B, Charreau B, Cassard A, Pourcel C, Soulillou JP (1998) Intracellular expression in pig cells of anti-alpha1, 3-galactosyltransferase single-chain FV antibodies reduces Gal alpha1, 3-Gal expression and inhibits cytotoxicity mediated by anti-Gal xenoantibodies. Transplantation 66(11):1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Varki A (1996) “Unusual” modifications and variations of vertebrate oligosaccharides: Are we missing the flowers for the trees? Glycobiology 6(7):707–710

    Article  PubMed  CAS  Google Scholar 

  • Wormald MR, Rudd PM, Harvey DJ, Chang SC, Scragg IG, Dwek RA (1997) Variations in oligosaccharide–protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36(6):1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL (1994) Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse–human immunoglobulin G1. J Exp Med 180(3):1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: Implications for genetic engineering. Trends Biotechnol 15(1):26–32

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Sato Y, Okada T, Chang K, Endo T, Morrison S (2000) In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 10(12):1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Yamada E, Tsukamoto Y, Sasaki R, Yagyu K, Takahashi N (1997) Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj J 14(3):401–405

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Kato K, Shindo M, Aoki S, Furusho K, Koga K, Takahashi N, Arata Y, Shimada I (1998) Dynamics of the carbohydrate chains attached to the Fc Portion of immunoglobulin g as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans. J Biomol NMR 12(3):385–394

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Park SH, Boucher S, Higgins E, Lee K, Edmunds T (2004) N-Linked oligosaccharide analysis of glycoprotein bands from isoelectric focusing gels. Anal Biochem 335(1):10–16

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Yu DT (2006) Matrix metalloproteinase expression in the spondyloarthropathies. Curr Opin Rheumatol 18:364–368

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shantha Raju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Raju, T.S. (2010). Impact of Fc Glycosylation on Monoclonal Antibody Effector Functions and Degradation by Proteases. In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_15

Download citation

Publish with us

Policies and ethics