Optimization Under Uncertainty

  • Urmila Diwekar
Part of the Springer Optimization and Its Applications book series (SOIA, volume 22)


Stochastic Programming Master Problem Uncertain Variable Latin Hypercube Sampling Chance Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. •.
    ASPEN (1982),ASPEN Technical Reference Manual, Cambridge, MA.Google Scholar
  2. •.
    Beale E.M. L. (1955), On minimizing a convex function subject to linear inequalities,Journal of the Royal Statistical Society,17B, 173.MathSciNetGoogle Scholar
  3. •.
    Birge J. R. (1997), Stochastic programming computation and applications,INFORMS Journal on Computing,9(2),111.CrossRefzbMATHMathSciNetGoogle Scholar
  4. •.
    Birge J. R. and F. Louveaux (1997),Introduction to Stochastic Programming, Springer Series in Operations Research, Springer, New York.zbMATHGoogle Scholar
  5. •.
    Charnes A. and W. W. Cooper (1959), Chance-constrained programming,Management Science,5, 73.CrossRefMathSciNetGoogle Scholar
  6. •.
    Chaudhuri P. (1996),Process synthesis under uncertainty, Ph.D. Thesis, Department of Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA .Google Scholar
  7. •.
    Chaudhuri P. and U. M. Diwekar (1996), Synthesis under uncertainty: A penalty function approach,AIChE Journal,42, 742.CrossRefGoogle Scholar
  8. •.
    Chaudhuri P. and U. Diwekar (1999), Synthesis approach to optimal waste blend under uncertainty,AIChE Journal,45, 1671.CrossRefGoogle Scholar
  9. •.
    Dantzig G. B. (1955), Linear programming under uncertainty,Management Science,1, 197.CrossRefzbMATHMathSciNetGoogle Scholar
  10. •.
    Dantzig G. B. and P. Glynn (1990), Parallel processors for planning under uncertainty,Annals of Operations Research,22, 1.CrossRefzbMATHMathSciNetGoogle Scholar
  11. •.
    Dantzig G. B. and G. Infanger (1991), Large scale stochastic linear programs–Importance sampling and bender decomposition,Computational and Applied Mathematics, Brezinski and U. Kulisch (ed.), 111.Google Scholar
  12. •.
    Dantzig G. B. and P. Wolfe (1960), The decomposition principle for linear programs,Operations Research,8, 101.CrossRefzbMATHGoogle Scholar
  13. •.
    Diwekar U. M. (1995), A process analysis approach to pollution prevention,AIChE Symposium Series on Pollution Prevention Through Process and Product Modifications,90, 168.Google Scholar
  14. •.
    Diwekar U. (2003), A novel sampling approach to combinatorial optimization under uncertainty,Computational Optimization and Applications,24, 335.CrossRefzbMATHMathSciNetGoogle Scholar
  15. •.
    Diwekar U. M. and J. R. Kalagnanam (1997), An efficient sampling technique for optimization under uncertainty,AIChE Journal,43, 440.CrossRefGoogle Scholar
  16. •.
    Diwekar U. M. and E. S. Rubin (1994), Parameter design method using Stochastic Optimization with ASPEN,Industrial Engineering Chemistry Research,33, 292.CrossRefGoogle Scholar
  17. •.
    Diwekar U. M. and E.S. Rubin (1991), Stochastic modeling of chemical Processes,Computers and Chemical Engineering,15, 105.CrossRefGoogle Scholar
  18. •.
    Edgeworth E. (1888), The mathematical theory of banking,J. Royal Statistical Society,51, 113.Google Scholar
  19. •.
    Higle J. and S. Sen (1991), Stochastic decomposition: An algorithm for two stage linear programs with recourse,Mathematics of Operations Research,16, 650.CrossRefzbMATHMathSciNetGoogle Scholar
  20. •.
    Hopkins, D. F., M. Hoza, and C. A. Lo Presti (1994),FY94 Optimal Waste Loading Models Development, Report prepared for U.S. Department of Energy under contract DE-AC06-76RLO 1830.Google Scholar
  21. •.
    Illman D. L. (1993), Researchers take up environmental challenge at Hanford,Chemical and Engineering News,9, July 21.Google Scholar
  22. •.
    Iman R. L. and W. J. Conover (1982), Small sample sensitivity analysis techniques for computer models, with an application to risk assessment,Communications in Statistics,A17, 1749.Google Scholar
  23. •.
    Iman R. L. and J. C. Helton (1988), An investigation of uncertainty and sensitivity analysis techniques for computer models,Risk Analysis,8(1), 71.CrossRefGoogle Scholar
  24. •.
    Iman R. L. and M. J. Shortencarier(1984), A FORTRAN77 Program and User’s Guide for Generation of Latin Hypercube and Random Samples for Use with Computer Models,NUREG/CR-3624, SAND83-2365, Sandia National Laboratories, Albuquerque, N.M.Google Scholar
  25. •.
    James B. A. P., Variance reduction techniques (1985),Journal of the Operations Research Society,36(6), 525.Google Scholar
  26. •.
    Luckacs E. (1960),Characteristic Functions, Charles Griffin, London.Google Scholar
  27. •.
    Kalagnanam J. R. and U. M. Diwekar (1997), An efficient sampling technique for off-line quality control,Technometrics,39(3), 308.CrossRefzbMATHGoogle Scholar
  28. •.
    Knuth D. E. (1973),The Art of Computer Programming, Volume 1: Fundamental Algorithms, Addison-Wesley, Reading, MA.Google Scholar
  29. •.
    Madansky A.(1960), Inequalities for stochastic linear programming problems,Management Science,6, 197.CrossRefzbMATHMathSciNetGoogle Scholar
  30. •.
    McKay M. D., R. J. Beckman, and W. J. Conover (1979), A comparison of three methods of selecting values of input variables in the analysis of output from a computer code,Technometrics,21(2), 239.CrossRefzbMATHMathSciNetGoogle Scholar
  31. •.
    Milton J. S. and J. C. Arnold (1995),Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, McGraw-Hill, New York.Google Scholar
  32. •.
    Morgan G. and M. Henrion (1990),Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, Cambridge, UK.Google Scholar
  33. •.
    Narayan, V., U. Diwekar and M. Hoza (1996), Synthesizing optimal waste blends,Industrial and Engineering Chemistry Research,35, 3519.CrossRefGoogle Scholar
  34. •.
    Nemhauser, G. L., A. H. G. Ronnooy Kan, and M. J. Todd (1989),Optimization: Handbooks in operations research and management science, Vol. 1. North-Holland Press, New York.Google Scholar
  35. •.
    Niederreiter H. (1992),Random Number Generation and Quasi-Monte Carlo methods, SIAM, Philadelphia.zbMATHGoogle Scholar
  36. •.
    Painton L. A. and U. M. Diwekar (1995), Stochastic annealing under uncertainty,European Journal of Operations Research,83, 489.CrossRefzbMATHGoogle Scholar
  37. •.
    Petruzzi N. C. and M. Dada (1999), Pricing and the newsvendor problem: A review with extensions,Operations Research,47(2), 183.CrossRefzbMATHGoogle Scholar
  38. •.
    Prékopa A. (1980), Logarithmic concave measures and related topics, inStochastic Programming, M. A. H. Dempster (ed.), Academic Press, New York.Google Scholar
  39. •.
    Prékopa A. (1995),Stochastic Programming, Kluwer Academic, Dordrecht, Netherlands.Google Scholar
  40. •.
    Raiffa H. and R. Schlaifer (1961),Applied Statistical Decision Theory, Harvard University, Boston.Google Scholar
  41. •.
    Saliby E. (1990), Descriptive sampling: A better approach to Monte Carlo simulations,Journal of the Operations Research Society,41(12), 1133.Google Scholar
  42. •.
    Taguchi G. (1986),Introduction to Quality Engineering, Asian Productivity Center, Tokyo.Google Scholar
  43. •.
    Tintner G. (1955), Stochastic linear programming with applications to agricultural economics,Proc. 2nd Symp. Lin. Progr., Washington, 197.Google Scholar
  44. •.
    Vajda S. (1972),Probabilistic Programming, Academic Press, New York.Google Scholar
  45. •.
    Van Slyke R. and R. J. B. Wets (1969), L-shaped linear programs with application to optimal control and stochastic programming,SIAM Journal on Applied Mathematics,17, 638.CrossRefzbMATHMathSciNetGoogle Scholar
  46. •.
    Wets R. J. B (1996), Challenges in stochastic programming,Math. Progr.,75, 115.zbMATHMathSciNetGoogle Scholar
  47. •.
    Wets R. J. B. (1990), Stochastic programming, inOptimization Handbooks in Operations Research and Management Science, Volume 1, G. L. Nemhauser, A. H. G. Rinooy Kan, and M. J. Todd, (ed.), North-Holland, Amsterdam (1990).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Urmila Diwekar
    • 1
  1. 1.University of Illinois at ChicagoUSA

Personalised recommendations