Skip to main content

Single-Molecule Studies of Rotary Molecular Motors

  • Chapter
  • First Online:
Book cover Handbook of Single-Molecule Biophysics

Abstract

Rotary molecular motors are protein complexes that transform chemical or electrochemical energy into mechanical work. There are five known rotary molecular motors in nature; the bacterial flagellar motor, and two motors in each of ATP-synthase and V-ATPase. Rotation of the flagellar motor drives a helical propeller that powers bacterial swimming. The function of the other rotary motors is to couple electrochemical ion gradients to synthesis or hydrolysis of ATP, and rotation is a detail of the coupling mechanism rather than the ultimate purpose of the motors. Much has been learned about the mechanism of the F1 part of ATP-synthase and the flagellar motor by measuring the rotation of single motors with a variety of techniques under a wide range of conditions. This chapter will review the structures of ATP-synthase and the flagellar motor, and what has been learned about their mechanisms using single molecule techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621–628.

    Article  ADS  Google Scholar 

  • Adachi K, Yasuda R, Noji H, Itoh H, Harada Y, Yoshida M, Kinosita K (2000) Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci USA 97: 7243–7247.

    Article  ADS  Google Scholar 

  • Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K (2007) Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation. Cell 130: 309–321.

    Article  Google Scholar 

  • Aizawa SI (1996) Flagellar assembly in Salmonella typhimurium. Mol Microbiol 19: 1–5.

    Article  MathSciNet  Google Scholar 

  • Althoff G, Lill H, Junge W (1989) Proton channel of the chloroplast ATP synthase, CF0: its time-averaged single-channel conductance as function of pH, temperature, isotopic and ionic medium composition. J Membr Biol 108: 263–271.

    Article  Google Scholar 

  • Arai H, Terres G, Pink S, Forgac M (1988) Topography and subunit stoichiometry of the coated vesicle proton pump. J Biol Chem 263: 8796–8802.

    Google Scholar 

  • Ariga T, Masaike T, Noji H, Yoshida M (2002) Stepping rotation of F(1)-ATPase with one, two, or three altered catalytic sites that bind ATP only slowly. J Biol Chem 277: 24870–24874.

    Article  Google Scholar 

  • Ariga T, Muneyuki E, Yoshida M (2007) F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nat Struct Mol Biol 14: 841–846.

    Article  Google Scholar 

  • Armstrong JB, Adler J (1969) Complementation of nonchemotactic mutants of Escherichia coli. Genetics 61: 61–66.

    Google Scholar 

  • Asai Y, Yakushi T, Kawagishi I, Homma M (2003) Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327: 453–463.

    Article  Google Scholar 

  • Baker MD, Wolanin PM, Stock JB (2006) Signal transduction in bacterial chemotaxis. Bioessays 28: 9–22.

    Article  Google Scholar 

  • Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245: 380–382.

    Article  ADS  Google Scholar 

  • Berg HC, Turner L (1993) Torque generated by the flagellar motor of Escherichia coli. Biophys J 65: 2201–2216.

    Article  Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72: 19–54.

    Article  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. WH Freeman, New York.

    Google Scholar 

  • Berry RM, Berg HC (1996) Torque generated by the bacterial flagellar motor close to stall. Biophys J 71: 3501–3510.

    Article  Google Scholar 

  • Berry RM, Berg HC (1997) Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc Natl Acad Sci USA 94: 14433–14437.

    Article  ADS  Google Scholar 

  • Berry RM, Berg HC (1999) Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys J 76: 580–587.

    Article  Google Scholar 

  • Berry RM, Turner L, Berg HC (1995) Mechanical limits of bacterial flagellar motors probed by electrorotation. Biophys J 69: 280–286.

    Article  Google Scholar 

  • Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209: 577–589.

    Article  Google Scholar 

  • Blair DF, Berg HC (1988) Restoration of torque in defective flagellar motors. Science 242: 1678–1681.

    Article  ADS  Google Scholar 

  • Blair DF (1995) How bacteria sense and swim. Annu Rev Microbiol 49: 489–522.

    Article  Google Scholar 

  • Blair DF, Berg HC (1991) Mutations in the MotA protein of Escherichia coli reveal domains critical for proton conduction. J Mol Biol 173: 4049–4055.

    Google Scholar 

  • Block SM, Berg HC (1984) Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309: 470–472.

    Article  ADS  Google Scholar 

  • Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338: 514–518.

    Article  ADS  Google Scholar 

  • Block SM, Fahrner KA, Berg HC (1991) Visualization of bacterial flagella by video-enhanced light microscopy. J Bacteriol 173: 933–936.

    Google Scholar 

  • Borsch M, Diez M, Zimmermann B, Reutera R, Graber P (2002) Stepwise rotation of the γ-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett 527: 147–152.

    Article  Google Scholar 

  • Bowler MW, Montgomery MG, Leslie AG, Walker JE (2007) Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 A resolution. J Biol Chem 282: 14238–14242.

    Article  Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase-some probabilities and possibilities. Biochim Biophys Acta 1140: 215–250.

    Article  ADS  Google Scholar 

  • Braun TF, Poulson S, Gully JB, Empey JC, Van Way S, Putnam A, Blair DF (1999) Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J Bacteriol 181: 3542–3551.

    Google Scholar 

  • Brown PN, Hill CP, Blair DF (2002) Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J 21: 3225–3234.

    Article  Google Scholar 

  • Brown PN, Mathews MA, Joss LA, Hill CP, Blair DF (2005) Crystal structure of the flagellar rotor protein FliN from Thermotoga maritime. J Bacteriol 187: 2890–2902.

    Article  Google Scholar 

  • Brown PN, Terrazas M, Paul K, Blair DF (2007) Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. J Bacteriol 189: 305–312.

    Article  Google Scholar 

  • Chen X, Berg HC (2000a) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 78: 1036–1041.

    Article  Google Scholar 

  • Chen X, Berg HC (2000b). Solvent-isotope and pH effects on flagellar rotation in Escherichia coli. Biophys J 78: 2280–2284.

    Article  Google Scholar 

  • Cherepanov DA, Junge W (2001) Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque. Biophys J 81: 1234–1244.

    Article  Google Scholar 

  • Chernyak BV, Glagolev AN, Sherman MY, Skulachev VP (1983) A novel type of energetics in a marine alkali-tolerant bacterium. DmNa-driven motility and sodium cycle. FEBS Lett 164: 38–42.

    Article  Google Scholar 

  • Chun SY, Parkinson JS (1988) Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239: 276–278.

    Article  ADS  Google Scholar 

  • Darnton NC, Berg HC (2007) Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys. J 92(6): 2230–2236.

    Google Scholar 

  • Darnton NC, Turner L, Rojevsky S, Berg HC (2007) On torque and tumbling in swimming Escherichia coli. J Bacteriol 189: 1756–1764.

    Article  Google Scholar 

  • Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CA, Gräber P (2004) Proton powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 11: 135–141.

    Article  Google Scholar 

  • Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML, Cross RL (1995) Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci USA 92: 10964–10968.

    Article  ADS  Google Scholar 

  • Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13: 457–512.

    Article  Google Scholar 

  • Felle H, Porter JS, Slayman CL, Kaback HR (1980) Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19: 3585–3590.

    Article  Google Scholar 

  • Feniouk BA, Cherepanov DA, Junge W, Mulkidjanian AY (2001) Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores. Biochim Biophys Acta 1506: 189–203.

    Article  Google Scholar 

  • Feniouk BA, Cherepanov DA, Voskoboynikova NE, Mulkidjanian AY, Junge W (2002) Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(0)F(1)-ATP synthase each. Biophys J 82: 1115–1122.

    Article  Google Scholar 

  • Feniouk BA, Kozlova MA, Knorre DA, Cherepanov DA, Mulkidjanian AY, Junge W (2004) The proton driven rotor of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating. Biophys J 86: 4094–4109.

    Article  Google Scholar 

  • Friedl P, Schairer HU (1981) The isolated F0 of Escherichia coli ATP-synthase is reconstitutively active in H+-conduction and ATP-dependent energy-transduction. FEBS Lett 128: 261–264.

    Article  Google Scholar 

  • Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Muller DJ, Meier T, Müller V (2008) An intermediate step in the evolution of ATPases—a hybrid Fo–Vo rotor in a bacterial Na+ F1F0 ATP synthase. FEBS J 275: 1999–2007.

    Article  Google Scholar 

  • Fung DC, Berg HC (1995) Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375: 809–812.

    Article  ADS  Google Scholar 

  • Furuike S, Hossain MD, Maki Y, Adachi K, Suzuki T, Kohori A, Itoh H, Yoshida M, Kinosita K (2008) Axle-less F1-ATPase rotates in the correct direction. Science 319: 955–958.

    Article  ADS  Google Scholar 

  • Gabel CV, Berg HC (2003) The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc Natl Acad Sci USA 100: 8748–8751.

    Article  ADS  Google Scholar 

  • Gibbons C, Montgomery MG, Leslie AG, Walker JE (2000) The structure of the central stalk in bovine F1-ATPase at 2.4 A resolution. Nat Struct Biol 7: 1055–1061.

    Article  Google Scholar 

  • Hara KY, Noji H, Bald D, Yasuda R, Kinosita K, Yoshida M (2000) The role of the DELSEED motif of the beta subunit in rotation of F1-ATPase. J Biol Chem 275: 14260–14263.

    Article  Google Scholar 

  • Hirono-Hara Y, Noji H, Nishiura M, Muneyuki E, Hara KY, Yasuda R, Kinosita K, Yoshida M (2001) Pause and rotation of F(1)-ATPase during catalysis. Proc Natl Acad Sci USA 98: 13649–13654.

    Article  ADS  Google Scholar 

  • Hirono-Hara Y, Ishizuka K, Kinosita K, Yoshida M, Noji H (2005) Activation of pausing F1 motor by external force. Proc Natl Acad Sci USA 102: 4288–4293.

    Article  ADS  Google Scholar 

  • Hirota N, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132: 278–280.

    Article  Google Scholar 

  • Hirota N, Imae Y (1983) Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J Biol Chem 258: 10577–10581.

    Google Scholar 

  • Holzenburg A, Jones PC, Franklin T, Pali T, Heimburg T, Marsh D, Findlay JB, Finbow ME (1993) Evidence for a common structure for a class of membrane channels. Eur J Biochem 213: 21–30.

    Article  Google Scholar 

  • Hossain MD, Furuike S, Maki Y, Adachi K, Ali MY, Huq M, Itoh H, Yoshida M, Kinosita K (2006) The rotor tip inside a bearing of a thermophilic F1-ATPase is dispensable for torque generation. Biophys J 90: 4195–4203.

    Article  Google Scholar 

  • Hotani H (1976) Light microscope study of mixed helices in reconstituted Salmonella flagella. J Mol Biol 106: 151–166.

    Article  Google Scholar 

  • Hudson GS, Mason JG, Holton TA, Koller B, Cox GB, Whitfeld PR, Bottomley W (1987) A gene cluster in the spinach and pea chloroplast genomes encoding one CF1 and three CF0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol 196: 283–298.

    Article  Google Scholar 

  • Iko Y, Sambongi Y, Tanabe M, Iwamoto-Kihara A, Saito K, Ueda I, Wada Y, Futai M (2001) ATP synthase F1 sector rotation. Defective torque generation in the beta subunit Ser-174 to Phe mutant and its suppression by second mutations. J Biol Chem 276: 47508–47511.

    Article  Google Scholar 

  • Inoue Y, Lo CJ, Fukuoka H, Takahashi H, Sowa Y, Pilizota T, Wadhams GH, Homma M, Berry RM, Ishijima A (2008) Torque–speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. J Mol Biol 376: 1251–1259.

    Article  Google Scholar 

  • Irikura VM, Kihara M, Yamaguchi S, Sockett H, Macnab RM (1993) Salmonella typhimurium fliG and fliN mutations causing defects in assembly, rotation, and switching of the flagellar motor. J Bacteriol 175: 802–810.

    Google Scholar 

  • Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427: 465–468.

    Article  ADS  Google Scholar 

  • Iwamoto A, Miki J, Maeda M, Futai M (1990) H(+)-ATPase gamma subunit of Escherichia coli. Role of the conserved carboxyl-terminal region. J Biol Chem 265: 5043–5048.

    Google Scholar 

  • Jagendorf AT, Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55: 170–177.

    Article  ADS  Google Scholar 

  • Junge W, Pänke O, Cherepanov DA, Gumbiowski K, Müller M, Engelbrecht S (2001) Inter-subunit rotation and elastic power transmission in F0F1-ATPase. FEBS Lett 504: 152–160.

    Article  Google Scholar 

  • Kaim G, Prummer M, Sick B, Zumofen G, Renn A, Wild UP, Dimroth P (2002) Coupled rotation within single F0F1 enzyme complexes during ATP synthesis or hydrolysis. FEBS Lett 525: 156–163.

    Article  Google Scholar 

  • Kanazawa H, Mabuchi K, Kayano T, Noumi T, Sekiya T, Futai M (1981) Nucleotide sequence of the genes for F0 components of the proton-translocating ATPase from Escherichia coli: prediction of the primary structure of F0 subunits. Biochem Biophys Res Commun 103: 604–612.

    Article  Google Scholar 

  • Kashket ER, Blanchard AG, Metzger WC (1980) Proton motive force during growth of Streptococcus lactis cells. J Bacteriol 143: 128–134.

    Google Scholar 

  • Kato-Yamada Y, Noji H, Yasuda R, Kinosita K, Yoshida M (1998) Direct observation of the rotation of epsilon subunit in F1-ATPase. J Biol Chem 273: 19375–19377.

    Article  Google Scholar 

  • Khan S, Meister M, Berg HC (1985) Constraints on flagellar rotation. J Mol Biol 184: 645–656.

    Article  Google Scholar 

  • Kihara M, Miller GU, Macnab RM (2000) Deletion analysis of the flagellar switch protein FliG of Salmonella. J Bacteriol 182: 3022–3028.

    Article  Google Scholar 

  • Kojima S, Blair DF (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40: 13041–13050.

    Article  Google Scholar 

  • Kudo S, Magariyama Y, Aizawa S (1990) Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 346: 677–680.

    Article  ADS  Google Scholar 

  • Larsen SH, Adler J, Gargus JJ, Hogg RW (1974) Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci USA 71: 1239–1243.

    Article  ADS  Google Scholar 

  • Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443: 355–358.

    Article  ADS  Google Scholar 

  • Lill H, Engelbrecht S, Schönknecht G, Junge W (1986) The proton channel, CF0, in thylakoid membranes. Only a low proportion of CF1-lacking CF0 is active with a high unit conductance (169 fS). Eur J Biochem 160: 627–634.

    Article  Google Scholar 

  • Lloyd SA, Tang H, Wang X, Billings S, Blair DF (1996) Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J Bacteriol 178: 223–231.

    Google Scholar 

  • Lloyd SA, Blair DF (1997) Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol 266: 733–744.

    Article  Google Scholar 

  • Lloyd SA, Whitbey FG, Blair DF, Hill CP (1999) Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400: 472–475.

    Article  ADS  Google Scholar 

  • Lo CJ, Leake MC, Berry RM (2006) Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys J 90: 357–365.

    Article  Google Scholar 

  • Lo CJ, Leake MC, Pilizota T, Berry RM (2007) Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophys J 93: 294–302.

    Article  Google Scholar 

  • Lowe G, Meister M, Berg HC (1987) Rapid rotation of flagellar bundles in swimming bacteria. Nature 325: 637–640.

    Article  ADS  Google Scholar 

  • Macnab RM (1976) Examination of bacterial flagellation by dark-field microscopy. J Clin Microbiol 4: 258–265.

    Google Scholar 

  • Macnab RM (2003) How bacteria assemble flagella. Annu Rev Biochem 57: 77–100.

    Google Scholar 

  • Magariyama Y, Susgiyama S, Muramoto K, Maekawa Y, Kawagishi I, Imae Y, Kudo S (1994) Very fast flagellar rotation. Nature 371: 752.

    Article  ADS  Google Scholar 

  • Manson MD, Tedesco P, Berg HC, Harold FM, Van Der Drift C (1977) A protonmotive force drives bacterial flagella. Proc Natl Acad Sci USA 74: 3060–3064.

    Article  ADS  Google Scholar 

  • Manson MD, Tedesco PM, Berg HC (1980) Energetics of flagellar rotation in bacteria. J Mol Biol 138: 541–561.

    Article  Google Scholar 

  • Matsuura S, Shioi J, Imae Y (1977) Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS Lett 82: 187–190.

    Article  Google Scholar 

  • Meier T, Matthey U, von Ballmoos C, Vonck J, Krug von Nidda T, Kühlbrandt W, Dimroth P (2003) Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthases. J Mol Biol 325: 389–397.

    Article  Google Scholar 

  • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308: 659–662.

    Article  ADS  Google Scholar 

  • Meister M, Berg HC (1987) The stall torque of the bacterial flagellar motor. Biophys J 52: 413–419.

    Article  Google Scholar 

  • Menz RI, Walker JE, Leslie AG (2001) Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106: 331–341.

    Article  Google Scholar 

  • Meyer Zu Tittingdorf JM, Rexroth S, Schäfer E, Schlichting R, Giersch C, Dencher NA, Seelert H (2004) The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state. Biochim Biophys Acta 1659:92–99.

    Article  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–148.

    Article  ADS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 1966 41: 445–502.

    Article  Google Scholar 

  • Mitome N, Ono S, Suzuki T, Shimabukuro K, Muneyuki E, Yoshida M (2002) The presence of phosphate at a catalytic site suppresses the formation of the MgADP-inhibited form of F1-ATPase. Eur J Biochem 269: 53–60.

    Article  Google Scholar 

  • de Mot R, Vanderleyden J (1994) A conserved surface-exposed domain in major outer membrane proteins of pathogenic Pseudomonas and Branhamella species shares sequence homology with the calcium-binding repeats of the eukaryotic extracellular matrix protein thrombospondin. Mol Microbiol 13: 379–380.

    Article  Google Scholar 

  • Müller M, Pänke O, Junge W, Engelbrecht S (2002) F1-ATPase, the C-terminal end of subunit gamma is not required for ATP hydrolysis-driven rotation. J Biol Chem 277: 23308–23313.

    Article  Google Scholar 

  • Muramoto K, Sugiyama S, Cragoe EJ, Imae Y (1994) Successive inactivation of the force-generating units of sodium-driven bacterial flagellar motors by a photoreactive amiloride analog. J Biol Chem 269: 3374–3380.

    Google Scholar 

  • Muramoto K, Kawagishi I, Kudo S, Magariyama Y, Imae Y, Homma M (1995) High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus. J Mol Biol 251: 50–58.

    Article  Google Scholar 

  • Murata T, Yamato I, Kakinuma Y, Leslie AG, Walker JE (2005) Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science 308: 654–659.

    Article  ADS  Google Scholar 

  • Murphy GE, Leadbetter JR, Jensen GJ (2006) In situ structure of the complete Treponema primitia flagellar motor. Nature 442: 1062–1064.

    Article  ADS  Google Scholar 

  • Nakanishi-Matsui M, Kashiwagi S, Hosokawa H, Cipriano DJ, Dunn SD, Wada Y, Futai M (2006) Stochastic high-speed rotation of Escherichia coli ATP synthase F1 sector: the epsilon subunit-sensitive rotation. J Biol Chem 281: 4126–4131.

    Article  Google Scholar 

  • Nakanishi-Matsui M, Kashiwagi S, Ubukata T, Iwamoto-Kihara A, Wada Y, Futai M (2007) Rotational catalysis of Escherichia coli ATP synthase F1 sector. Stochastic fluctuation and a key domain of the beta subunit. J Biol Chem 282: 20698–20704.

    Article  Google Scholar 

  • Negrin RS, Foster DL, Fillingame RH (1980) Energy-transducing H+-ATPase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector. J Biol Chem 255: 5643–5648.

    Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics. Academic Press, San Diego, CA.

    Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3: 94–103.

    Article  Google Scholar 

  • Nishio K, Iwamoto-Kihara A, Yamamoto A, Wada Y, Futai M (2002) Subunit rotation of ATP synthase embedded in membranes: a or beta subunit rotation relative to the c subunit ring. Proc Natl Acad Sci USA 99: 13448–13452.

    Article  ADS  Google Scholar 

  • Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, Yoshida M, Kinosita K (2004) Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat Struct Mol Biol 11: 142–148.

    Article  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F1-ATPase. Nature 386: 299–302.

    Article  ADS  Google Scholar 

  • Noji H, Bald D, Yasuda R, Itoh H, Yoshida M, Kinosita K (2001) Purine but not pyrimidine nucleotides support rotation of F1-ATPase. J Biol Chem 276: 25480–25486.

    Article  Google Scholar 

  • Omote H, Sambonmatsu N, Saito K, Sambongi Y, Iwamoto-Kihara A, Yanagida T, Wada Y, Futai M (1999) The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli. Proc Natl Acad Sci USA 96: 7780–7784.

    Article  ADS  Google Scholar 

  • O’Neill J, Roujeinikova A (2008) Cloning, purification and crystallization of MotB, a stator component of the proton-driven bacterial flagellar motor. Acta Cryst F64: 561–563.

    Article  Google Scholar 

  • Oster G, Wang H (2000) Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochim Biophys Acta 1458: 482–510.

    Article  Google Scholar 

  • Pänke O, Cherepanov DA, Gumbiowski K, Engelbrecht S, Junge W (2001) Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophys J 81:1220–1233.

    Article  Google Scholar 

  • Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR (2006) Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci USA 103: 11886–11891.

    Article  ADS  Google Scholar 

  • Paster E, Ryu WS (2008) The thermal impulse response of Escherichia coli. PNAS 105: 5373–5377.

    Article  ADS  Google Scholar 

  • Pilizota T, Bilyard T, Bai F, Futai M, Hosokawa H, Berry RM (2007) A programmable optical angle clamp for rotary molecular motors. Biophys J 93: 264–275.

    Article  Google Scholar 

  • Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Muller DJ (2005) The C15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6: 1040–1044.

    Article  Google Scholar 

  • Pogoryelov D, Reichen C, Klyszejko AL, Brunisholz R, Muller DJ, Dimroth P, Meier T (2007) The oligomeric state of C rings from cyanobacterial f-ATP synthases varies from 13 to 15. J Bacteriol 189: 5895–5902.

    Article  Google Scholar 

  • Powell B, Graham LA, Stevens TH (2000) Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J Biol Chem 275: 23654–23660.

    Article  Google Scholar 

  • Rao R, Senior AE (1987) The properties of hybrid F1-ATPase enzymes suggest that a cyclical catalytic mechanism involving three catalytic sites occurs. J Biol Chem 262: 17450–17454.

    Google Scholar 

  • Reid SW, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci USA 103: 8066–8071.

    Article  ADS  Google Scholar 

  • Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H, Takeuchi S, Noji H (2005) Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433: 773–777.

    Article  ADS  Google Scholar 

  • Rubinstein JL, Walker JE, Henderson R (2003) Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22: 6182–6192.

    Article  Google Scholar 

  • Ryu WS, Berry RM, Berg HC (2000) Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403: 444–447.

    Article  ADS  Google Scholar 

  • Sabbert D, Engelbrecht S, Junge W (1996) Intersubunit rotation in active F-ATPase. Nature 381: 623–625.

    Article  ADS  Google Scholar 

  • Sakaki N, Shimo-Kon R, Adachi K, Itoh H, Furuike S, Muneyuki E, Yoshida M, Kinosita K (2005) One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys J 88: 2047–2056.

    Article  Google Scholar 

  • Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286: 1722–1724.

    Article  Google Scholar 

  • Samuel AD, Berg HC (1995) Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc Natl Acad Sci USA 92: 3502–3506.

    Article  ADS  Google Scholar 

  • Samuel AD, Berg HC (1996) Torque-generating units of the bacterial flagellar motor step independently. Biophys J 71: 918–923.

    Article  Google Scholar 

  • Sato K, Homma M (2000) Multimeric structure of PomA, a component of the Na+-driven polar flagellar motor of Vibrio alginolyticus. J Biol Chem 275: 20223–20228.

    Article  Google Scholar 

  • Schemidt RA, Qu J, Williams JR, Brusilow WS (1998) Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli. J Bacteriol 180: 3205–3208.

    Google Scholar 

  • Schneider E, Altendorf K (1982) ATP synthetase (F1F0) of Escherichia coli K-12. High-yield preparation of functional F0 by hydrophobic affinity chromatography. Eur J Biochem 126: 149–153.

    Article  Google Scholar 

  • Schwem BE, Fillingame RH (2006) Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four helix bundle. J Biol Chem 281: 37861–37867.

    Article  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Structural biology: proton-powered turbine of a plant motor. Nature 405: 418–419.

    Article  ADS  Google Scholar 

  • Sharp LL, Zhou J, Blair DF (1995a) Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis. Proc Natl Acad Sci USA 92: 7946–7950.

    Article  ADS  Google Scholar 

  • Sharp LL, Zhou J, Blair DF (1995b) Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Biochemistry 34: 9166–9171.

    Article  Google Scholar 

  • Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K, Yoshida M (2003) Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc Natl Acad Sci USA 100: 14731–14736.

    Article  ADS  Google Scholar 

  • Shioi JI, Matsuura S, Imae Y (1980) Quantitative measurements of proton motive force and motility in Bacillus subtilis. J Bacteriol 144: 891–897.

    Google Scholar 

  • Shirakihara Y, Leslie AG, Abrahams JP, Walker JE, Ueda T, Sekimoto Y, Kambara M, Saika K, Kagawa Y, Yoshida M (1997) The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5: 825–836.

    Article  Google Scholar 

  • Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249: 73–74.

    Article  ADS  Google Scholar 

  • Silverman M, Matsumura P, Simon M (1976) The identification of the mot gene product with Escherichia coli–lambda hybrids. Proc Natl Acad Sci USA 73: 3126–3130.

    Article  ADS  Google Scholar 

  • Sokolov M, Lu L, Tucker W, Gao F, Gegenheimer PA, Richter ML (1999) The 20 C-terminal amino acid residues of the chloroplast ATP synthase gamma subunit are not essential for activity. J Biol Chem 274: 13824–13829.

    Article  Google Scholar 

  • Sone N, Hamamoto T, Kagawa Y (1981) pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0xF1) and effects of tyrosyl residue modification. J Biol Chem 256: 2873–2877.

    Google Scholar 

  • Sowa Y, Hotta H, Homma M, Ishijima A (2003) Torque–speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol 327: 1043–1051.

    Article  Google Scholar 

  • Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437: 916–919.

    Article  ADS  Google Scholar 

  • Sowa Y and Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys (In press).

    Google Scholar 

  • Spetzler D, York J, Daniel D, Fromme R, Lowry D, Frasch W (2006) Microsecond time scale rotation measurements of single F1-ATPase molecules. Biochemistry 45: 3117–3124.

    Article  Google Scholar 

  • Stahlberg H, Müller DJ, Suda K, Fotiadis D, Engel A, Meier T, Matthey U, Dimroth P (2001) Bacterial Na(+)-ATP synthase has an undecameric rotor. EMBO Rep 2: 229–233.

    Article  Google Scholar 

  • Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286: 1700–1705.

    Article  Google Scholar 

  • Suzuki H, Yonekura K, Namba K (2004) Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J Mol Biol 337: 105–113.

    Article  Google Scholar 

  • Tanabe M, Nishio K, Iko Y, Sambongi Y, Iwamoto-Kihara A, Wada Y, Futai M (2001) Rotation of a complex of the gamma subunit and C ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable. Biol Chem 276: 15269–15274.

    Article  Google Scholar 

  • Thomas DR, Morgan DG, DeRosier DJ (1999) Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proc Natl Acad Sci USA 96: 10134–10139.

    Article  ADS  Google Scholar 

  • Thomas DR, Francis NR, Xu C, DeRosier DJ (2006) The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 188: 7039–7048.

    Article  Google Scholar 

  • Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182: 2793–2801.

    Article  Google Scholar 

  • Ueno T, Oosawa K, Aizawa S (1992) M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of single protein, FliF. J Mol Biol 227: 672–677.

    Article  Google Scholar 

  • Ueno T, Oosawa K, Aizawa S (1994) Domain structures of the MS ring component protein (FliF) of the flagellar basal body of Salmonella typhimurium. J Mol Biol 236: 546–555.

    Article  Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5: 1024–1037.

    Article  Google Scholar 

  • Wagner R, Apley EC, Hanke W (1989) Single channel H+ currents through reconstituted chloroplast ATP synthase CF0-CF1. EMBO J 8: 2827–2834.

    Google Scholar 

  • Walker JE, Fearnley IM, Gay NJ, Gibson BW, Northrop FD, Powell SJ, Runswick MJ, Saraste M, Tybulewicz VL (1985) Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol 184: 677–701.

    Article  Google Scholar 

  • Washizu M, Kurahashi Y, Iochi H, Kurosawa O, Aizawa S, Kudo S, Magariyama Y, Hotani H (1993) Dielectrophoretic measurement of bacterial motor characteristics. IEEE Trans Ind Appl 29: 286–294.

    Article  Google Scholar 

  • Wilkens S, Zhou J, Nakayama R, Dunn SD, Capaldi RA (2000) Localization of the delta subunit in the Escherichia coli F1F0-ATPsynthase by immuno electron microscopy: the delta subunit binds on top of the F1. J Mol Biol 295: 387–391.

    Article  Google Scholar 

  • Yakushi T, Yang J, Fukuoka H, Homma M, Blair DF (2006) Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. J Bacteriol 188: 1466–1472.

    Article  Google Scholar 

  • Yamaguchi S, Aizawa S, Kihara M, Isomura M, Jones CJ, Macnab RM (1986a) Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 168: 1172–1179.

    Google Scholar 

  • Yamaguchi S, Fujita H, Ishihara A, Aizawa S, Macnab RM (1986b) Subdivision of flagellar genes of Salmonella typhimurium into regions for assembly, rotation and switching. J Bacteriol 166: 187–193.

    Google Scholar 

  • Yasuda R, Noji H, Kinosita K, Yoshida M (1998) F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93: 1117–1124.

    Article  Google Scholar 

  • Yasuda R, Noji H, Yoshida M, Kinosita K, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410: 898–904.

    Article  ADS  Google Scholar 

  • Yasuda R, Masaike T, Adachi K, Noji H, Itoh H, Kinosita K (2003) The ATP waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci USA 100: 9314–9318.

    Article  ADS  Google Scholar 

  • Yorimitsu T, Sowa Y, Ishijima A, Yakushi T, Homma M (2002) The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. J Mol Biol 320: 403–413.

    Article  Google Scholar 

  • Yorimitsu T, Mimaki A, Yakushi T, Homma M (2003) The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. J Mol Biol 334: 567–583.

    Article  Google Scholar 

  • Yorimitsu T, Kojima M, Yakushi T, Homma M (2004) Multimeric structure of the PomA/PomB channel complex in the Na+-driven flagellar motor of Vibrio alginolyticus. J Biochem 135: 43–51.

    Article  Google Scholar 

  • York J, Spetzler D, Hornung T, Ishmukhametov R, Martin J, Frasch WD (2007) Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes. J Bioenerg Biomemb 39: 435–439.

    Article  Google Scholar 

  • Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase–a marvellous rotary engine of the cell. Nat Mol Cell Biol 2:669–677.

    Article  Google Scholar 

  • Yuan J, Berg HC (2008) Resurrection of the flagellar rotary motor near zero load. Proc Natl Acad Sci USA 105: 1182–1185.

    Article  ADS  Google Scholar 

  • Zhang Y, Wang J, Cui Y, Yue J, Fang X (2005) Rotary torque produced by proton motive force in F0F1 motor. Biochem Biophys Res Commun 331: 370–374.

    Article  Google Scholar 

  • Zhao R, Pathak N, Jaffe H, Reese TS, Khan S (1996) FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol 261: 195–208.

    Article  Google Scholar 

  • Zhou J, Fazzio RT, Blair DF (1995) Membrane topology of the MotA protein of Escherichia coli. J Mol Biol 251: 237–242.

    Article  Google Scholar 

  • Zhou J, Blair DF (1997) Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol 273: 428–439.

    Article  Google Scholar 

  • Zhou J, Lloyd SA, Blair DF (1998a) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci USA 95: 6436–6441.

    Article  ADS  Google Scholar 

  • Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, Braun TF, Blair DF (1998b) Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp32 of MotB. J Bacteriol 180: 2729–2735.

    Google Scholar 

  • Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M (2005) Movements of the epsilon-subunit during catalysis and activation in single membrane-bound H(+)-ATP synthase. EMBO J 24: 2053–2063.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pilizota, T., Sowa, Y., Berry, R.M. (2009). Single-Molecule Studies of Rotary Molecular Motors. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_7

Download citation

Publish with us

Policies and ethics