Skip to main content

High-Speed Atomic Force Microscopy

  • Chapter
  • First Online:
Handbook of Single-Molecule Biophysics
  • 3023 Accesses

Abstract

Biological macromolecules are responsible for the vital activities of life. Among the various approaches to understanding their functional mechanisms, the most straightforward approach is to directly visualize the structure and dynamic action of biological macromolecules at high spatial and temporal resolution. However, the microscopy needed to enable such visualization was not available until the recent development of high-speed atomic force microscopy (AFM). This allows the recording of images of biological samples at 30–60 ms/frame without disturbing delicate biomolecular interactions and hence the delineation of time-series events that occur in biomolecules at work. This chapter describes various devices and techniques developed for high-speed AFM and imaging studies performed on several protein systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afrin R., M. T. Alam, and A. Ikai, Pretransition and progressive softening of bovine carbonic anhydrase II as probed by single molecule atomic force microscopy, Protein Sci. 14:1447–1457 (2005).

    Article  Google Scholar 

  • Albrecht T. R., P. Grütter, D. Horne, and D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69:668–673 (1991).

    Article  ADS  Google Scholar 

  • Anczykowski B., J. P. Cleveland, D. Krüger, V. Elings, and H. Fuchs, Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation, Appl. Phys. A 66:S885–S889 (1998).

    Article  ADS  Google Scholar 

  • Ando T., N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, A high-speed atomic force microscope for studying biological macromolecules, Proc. Natl. Acad. Sci. USA 98:12468–12472 (2001).

    Article  ADS  Google Scholar 

  • Ando T., N. Kodera, D. Maruyama, E. Takai, K. Saito, and A. Toda, A high-speed atomic force microscope for studying biological macromolecules in action, Jpn. J. Appl. Phys. 41:4851–4856 (2002).

    Article  ADS  Google Scholar 

  • Ando T., N. Kodera, Y. Naito, T. Kinoshita, K. Furuta, and Y. Y. Toyoshima, A High-speed atomic force microscope for studying biological macromolecules in action, Chem. Phys. Chem. 4:1196–1202 (2003).

    Article  Google Scholar 

  • Ando T., T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita, H. Yamashita, and K. Matada, High-speed atomic force microscopy for capturing the dynamic behavior of protein molecules at work, Surf. Sci. Nanotechnol. 3:384–392 (2005).

    Article  Google Scholar 

  • Ando T., T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita, H. Yamashita, and M. Sakashita, High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work, Jpn. J. Appl. Phys. 45:1897–1903 (2006).

    Article  ADS  Google Scholar 

  • Ando T., T. Uchihashi, N. Kodera, D. Yamamoto, M. Taniguchi, A. Miyagi, and H. Yamashita, High-speed atomic force microscopy for observing dynamic biomolecular processes, J. Mol. Recognit. 20:448–458 (2007).

    Article  Google Scholar 

  • Ando T., T. Uchihashi, N. Kodera, D. Yamamoto, A. Miyagi, M. Taniguchi, and H. Yamashita, High-speed AFM and nano-visualization of biomolecular processes, Pflugers Arch. Eur. J. Physiol. 456:211–225 (2008a).

    Article  Google Scholar 

  • Ando T., T. Uchihashi, and T. Fukuma, High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes, Prog. Surf. Sci. 83:337–437 (2008b).

    Google Scholar 

  • Azem A., M. Kessel, and P. Goloubinoff, Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer, Science 265:653–656 (1994).

    Article  ADS  Google Scholar 

  • Bar G., Y. Thomann, R. Brandsch, H.-J. Cantow, and M.-H. Whangbo, Factors affecting the height and phase images in tapping mode atomic force microscopy. Study of phase-separated polymer blends of poly(ethene-co-styrene) and poly (2,6-dimethyl- 1,4-phenylene oxide), Langmuir 13:3807–3812 (1997).

    Article  Google Scholar 

  • Belotserkovskaya R., S. Oh, V. A. Bondarenko, G. Orphanides, V. M. Studitsky, and D. Reinberg, FACT facilitates transcription-dependent nucleosome alteration, Science 301:1090–1093 (2003).

    Article  ADS  Google Scholar 

  • Burgess S. A., M. L. Walker, F. Wang, J. P. Sellers, H. D. White, P. J. Knight, and J. Trinick, The prepower stroke conformation of myosin V, J. Cell Biol. 159:983–991 (2002).

    Article  Google Scholar 

  • Burgess S. A., M. L. Walker, H. Sakakibara, P. J. Knight, and K. Oiwa, Dynein structure and power stroke, Nature 421:715–718 (2003).

    Article  ADS  Google Scholar 

  • Burston S. G., N. A. Ranson, and A. R. Clarke, The origins and consequences of asymmetry in the chaperonin reaction cycle, J. Mol. Biol. 249:138–152 (1995).

    Article  Google Scholar 

  • Braig K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler, The crystal structure of the bacterial chaperonin GroEL at 2.8 Å, Nature 371:578–586 (1994).

    Article  ADS  Google Scholar 

  • Chang W.-J., J.-C. Hsu, and T.-H. Lai, Inverse calculation of the tip–sample interaction force in atomic force microscopy by the conjugate gradient method, J. Phys. D Appl. Phys. 37:1123–1126 (2004).

    Article  ADS  Google Scholar 

  • Cleveland J. P., B. Anczykowski, A. E. Schmid, and V. B. Elings, Energy dissipation in tapping-mode atomic force microscopy, Appl. Phys. Lett. 72:2613–2615 (1998).

    Article  ADS  Google Scholar 

  • Czajkowsky D. M., M. J. Allen, V. Elings, and Z. Shao, Direct visualization of surface charge in aqueous solution, Ultramicroscopy 74:1–5 (1998).

    Article  Google Scholar 

  • Darst S. A., M. Ahlers, P. H. Meller, E. W. Kubalek, R. Blankenburg, H. O. Ribi, H. Ringsdorf, and R. D. Kornberg, Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules, Biophys. J. 59:387–396 (1991).

    Article  Google Scholar 

  • Demarest S. J., M. Martinez-Yamout, J. Chung, H. Chen, W. Xu, H. J. Dyson, R. M. Evans, and P. E. Wright, Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators, Nature 415:549–553 (2002).

    Article  Google Scholar 

  • Forkey J. N., M. E. Quinlan, M. A. Shaw, J. E. T. Corrie, and Y. E. Goldman, Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization, Nature, 422:399–404 (2003).

    Article  ADS  Google Scholar 

  • Fukuma T., M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy, Rev. Sci. Instrum. 76:053704 (2005).

    Article  ADS  Google Scholar 

  • Fukuma T., Y. Okazaki, N. Kodera, T. Uchihashi, and T. Ando, High resonance frequency force microscope scanner using inertia balance support, Appl. Phys. Lett. 92:243119 (2008).

    Article  ADS  Google Scholar 

  • Gao S., L. F. Chi, S. Lenhert, B. Anczykowski, C. M. Niemeyer, M. Adler, and H. Fuchs, High quality mapping of DNA-protein complexes by dynamic scanning force microscopy, Chem. Phys. Chem. 6:384–388 (2001).

    Article  Google Scholar 

  • Giessibl F.J., Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy, Science 267:68–71 (1995).

    Article  ADS  Google Scholar 

  • Grallert H. and J. Buchner, Review: A structural view of the GroE chaperone cycle, J. Struct. Biol. 135:95–103 (2001).

    Article  Google Scholar 

  • Hung S. K., E.-T. Hwu, I.-S. Hwang, and L.-C. Fu, Postfitting control scheme for periodic piezoscanner driving, Jpn. J. Appl. Phys. 45B:1917–1921 (2006).

    Article  ADS  Google Scholar 

  • Kindt J. H., G. E. Fantner, J. A. Cutroni, and P. K. Hansma, Rigid design of fast scanning probe microscopes using finite element analysis, Ultramicroscopy 100:259–265 (2004).

    Article  Google Scholar 

  • Kitazawa M., K. Shiotani, and A. Toda, Batch fabrication of sharpened silicon nitride tips, Jpn. J. Appl. Phys. (Pt. 1) 42:4844–4847 (2003).

    Article  ADS  Google Scholar 

  • Kodera N., H. Yamashita, and T. Ando, Active damping of the scanner for high-speed atomic force microscopy, Rev. Sci. Instrum. 76:053708 (2005).

    Article  ADS  Google Scholar 

  • Kodera N., M. Sakashita, and T. Ando, Dynamic proportional-integral-differential controller for high-speed atomic force microscopy, Rev. Sci. Instrum. 77:083704 (2006).

    Article  ADS  Google Scholar 

  • Kokavecz J., Z. Tóth, Z. L. Horváth, P. Heszler, and Á. Mechler, Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope, Nanotechnology 17:S173–S177 (2006).

    Article  ADS  Google Scholar 

  • Ku A. C., S. A. Darst, C. R. Robertson, A. P. Gast, and R. D. Kornberg, Molecular analysis of two-dimensional protein crystallization, J. Phys. Chem. 97:3013–3016 (1993).

    Article  Google Scholar 

  • Legleiter J., M. Park, B. Cusick, and T. Kowalewski, Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale, Proc. Natl. Acad. Sci. USA 103:4813–4818 (2006).

    Article  ADS  Google Scholar 

  • Lorimer G. H., Protein folding. Folding with a two-stroke motor, Nature 388:720–722 (1997).

    Article  ADS  Google Scholar 

  • Minezaki Y., K. Homma, A. R. Kinjo, and K. Nishikawa, Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation, J. Mol. Biol. 359:1137–1149 (2006).

    Article  Google Scholar 

  • Miyagi A., Y. Tsunaka, T. Uchihashi, K. Mayanagi, S. Hirose, K. Morikawa, and T. Ando, Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy, Chem. Phys. Chem. 9:1859–1866 (2008).

    Google Scholar 

  • Reinberg D. and R. J. Sims III, de FACTo nucleosome dynamics, J. Biol. Chem. 281:23297–23301 (2006).

    Article  Google Scholar 

  • Reviakine I. and A. Brisson, Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy, Langmuir 16:1806–1815 (2000).

    Article  Google Scholar 

  • Reviakine I. and A. Brisson, Streptavidin 2D crystals on supported phospholipid bilayers: Toward constructing anchored phospholipid bilayers, Langmuir 17:8293–8299 (2001).

    Article  Google Scholar 

  • Rye H. S., S. G. Burston, W. A. Fenton, J. M. Beechem, Z. Xu, P. B. Sigler, and A. L. Horwich, Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL, Nature 388:792–798 (1997).

    Article  ADS  Google Scholar 

  • Rye H. S., A. M. Roseman, S. Chen, K. Furtak, W. A. Fenton, H. R. Saibil, and A. L. Horwich, GroEL–GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97:325–338 (1999).

    Article  Google Scholar 

  • Sackmann E., Supported membranes: Scientific and practical applications, Science 271:43–48 (1996).

    Article  ADS  Google Scholar 

  • Sahin O., Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip–sample force measurements, Rev. Sci. Instrum. 78:103707 (2007).

    Article  ADS  Google Scholar 

  • Sahin O., S. Magonov, C. Su, C. F. Quate, and O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces, Nat Nanotechnol. 2:507–514 (2007).

    Article  Google Scholar 

  • Sakamoto T., I. Amitani, E. Yokota, and T. Ando, Direct observation of processive movement by individual myosin V molecules, Biochem. Biophys. Res. Commun. 272:586–590 (2000).

    Article  Google Scholar 

  • Scheuring S., D. J. Müller, P. Ringler, J. B. Heymann, and A. Engel, Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope, J. Microsc 193:28–35 (1999).

    Article  Google Scholar 

  • Schiener J., S. Witt, M. Stark, and R. Guckenberger, Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for setpoint control, Rev. Sci. Instrum. 75:2564–2568 (2004).

    Article  ADS  Google Scholar 

  • Schitter G., F. Allgöwer, and A Stemmer, A new control strategy for high-speed atomic force microscopy, Nanotechnology 15:108–114 (2004).

    Article  ADS  Google Scholar 

  • Shimojima T., M. Okada, T. Nakayama, H. Ueda, K. Okawa, A. Iwamatsu, H. Handa, and S. Hirose, Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor, Genes Dev. 17:1605–1616 (2003).

    Article  Google Scholar 

  • Stark M. and R. Guckenberger, Fast low-cost phase detection setup for tapping-mode atomic force microscopy, Rev. Sci. Instrum. 70:3614–3619 (1999).

    Article  ADS  Google Scholar 

  • Stark M., R. W. Stark, W. M. Heck, and R. Guckenberger, Inverting dynamic force microscopy: From signals to time-resolved interaction forces, Proc. Natl. Acad. Sci. USA 99:8473–8478 (2002).

    Article  ADS  Google Scholar 

  • Syed S., G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, Adaptability of myosin V studied by simultaneous detection of position and orientation, EMBO J. 25:1795–1803 (2006).

    Article  Google Scholar 

  • Taguchi H., T. Ueno, H. Tadakuma, M. Yoshida, and T. Funatsu, Single-molecule observation of protein–protein interactions in the chaperonin system, Nat Biotechnol. 19:861–865 (2001).

    Article  Google Scholar 

  • Tamayo J., and R. García, Deformation, contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir 12:4430–4435 (1996).

    Article  Google Scholar 

  • Tamayo J., A. D. L. Humphris, R. J. Owen, and M. J. Miles, High-Q dynamic force microscopy in liquid and its application to living cells, Biophys. J. 81:526–537 (2001).

    Article  Google Scholar 

  • Uchihashi T., T. Ando, and H. Yamashita, Fast phase imaging in liquids using a rapid scan atomic force microscope, Appl. Phys. Lett. 89:213112 (2006).

    Article  ADS  Google Scholar 

  • Vadgama P., Surface biocompatibility, Annu. Rep. Prog. Chem. C Phys. Chem. 101:14–52 (2005).

    Article  Google Scholar 

  • Wang S.-W., C. R. Robertson, and A. P. Gast, Molecular arrangement in two-dimensional streptavidin crystals, Langmuir 15:1541–1548 (1999).

    Article  Google Scholar 

  • Warshaw D. M., G. G. Kennedy, S. S. Work, E. B. Krementsova, S. Beck, and K. M. Trybus, Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity, Biophys. J. 88:L30–L32 (2005).

    Article  Google Scholar 

  • Wulff G., Zur frage der geschwindigkeit des wachstums und der auflösung der kristallflächen Z. Kristallogr. 34:449–530 (1901).

    Google Scholar 

  • Xu Z., A. L. Horwich, and P. B. Sigler, The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex, Nature 388:741–750 (1997).

    Article  ADS  Google Scholar 

  • Yamamoto D., T. Uchihashi, N. Kodera, and T. Ando, Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy, Nanotechnology 19:384009 (2008).

    Google Scholar 

  • Yatcilla M. T., C. R. Robertson, and A. P. Gast, Influence of pH on two-dimensional streptavidin crystals, Langmuir 14:497–503 (1998).

    Article  Google Scholar 

  • Yifrach O. and A. L. Horovitz, Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL, Biochemistry 34:5303–5308 (1995).

    Article  Google Scholar 

  • Yildiz A., J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization, Science 300:2061–2065 (2003).

    Article  ADS  Google Scholar 

  • Zhang S. F., P. Rolfe, G. Wright, W. Lian, A.J . Milling, S. Tanaka, and K. Ishihara, Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group, Biomaterials 19:691–700 (1998).

    Article  Google Scholar 

  • Zhong Q., D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surf. Sci. 290:L688–L692 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ando, T., Uchihashi, T. (2009). High-Speed Atomic Force Microscopy. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_17

Download citation

Publish with us

Policies and ethics