Skip to main content

Power Sources for Wireless Sensor Networks

  • Chapter
Energy Harvesting Technologies

Abstract

Many environmental and industrial monitoring scenarios require wireless instrumentation with a small form factor and a long service life, a combination that forces designers to move beyond batteries and into energy harvesting techniques. This chapter considers the average requirements of wireless sensor networks, and assesses the suitability of modern thermal, photonic, and vibration-harvesting methods to power such networks across various application spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arnold CB, Serra P, Piqué A (2007) Laser Direct-Write Techniques for Printing of Complex Materials. Mrs Bulletin 32:24–30

    Google Scholar 

  • Barnett AM, Kirkpatrick D, Honsberg CB, Moore D (2007) Milestones Toward 50% Efficient Solar Cell Modules. 22nd European Photovoltaic Solar Energy Conference

    Google Scholar 

  • Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Thin-film lithium and lithium-ion batteries. Solid State Ionics 135:33–45

    Article  Google Scholar 

  • Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, O’Donnell T, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering 17:1257–1265

    Article  Google Scholar 

  • Beeby SP, Tudor MJ, Torah RN, Roberts S (2007) Experimental comparison of macro and micro scale electromagnetic vibration powered generators. Microsystem Technologies 13, pp. 1647–1653

    Article  Google Scholar 

  • Bottner H, Nurnus J, Gavrikov A, Kuhner G, (2004) New thermoelectric components using microsystem technologies. Microelectromechanical Systems 13:414–420

    Article  Google Scholar 

  • Dherea NG, Dhere RG (2005) Thin-film photovoltaics. Journal of Vacuum Science & Technology A 23:1208–1214

    Article  Google Scholar 

  • Duggirala R, Lal A, Polcawich RG, Dubey M (2006) CMOS compatible multiple power-output MEMS Radioisotope μ-Power generator. IEEE Electron Devices Meeting: 1–4

    Google Scholar 

  • Dutta P, Hui J, Jeong J, Kim S, Sharp C, Taneja J (2006) Trio: enabling sustainable and scalable outdoor wireless sensor network deployments. International Conference on InformationProcessing in Sensor Networks 407–415

    Google Scholar 

  • Epstein AH (2004) Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines. Journal of Engineering for Gas Turbines and Power 126:205–226

    Article  Google Scholar 

  • Frechette L, Lee CS, Arslan S, Liu YM (2003) Design of a Microfabricated Rankine Cycle Steam Turbine for Power Generation. Proceedings of ASME IMECE

    Google Scholar 

  • Green MA, Emery K, King DL, Igari S, Warta W (2005) Solar cell efficiency tables (Version 25). Progress in Photovoltaics: Research and Applications 13:49–54

    Article  Google Scholar 

  • Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. Journal of Materials Research:1924–1946

    Google Scholar 

  • Jiang X, Polastre J, Culler D (2005) Perpetual environmentally powered sensor networks. Proceedings of the 4th International Symposium on Information Processing in Sensor Networks

    Google Scholar 

  • Kishi M, Nemoto H, Okano H (1999) Thermoelectric device. US Patent 5,982,013

    Google Scholar 

  • Lal A, Li RH (2005) Pervasive power: a radioisotope-powered piezoelectric generator. Pervasive Computing

    Google Scholar 

  • Leland ES, Wright P (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Materials & Structures 15:1413–1420

    Article  Google Scholar 

  • Li YQ, O’Handley RC, Dionne GF, Zhang C (2004) Passive solid-state magnetic field sensors and applications therefor. US Patent 6,809,515

    Google Scholar 

  • Maksimovic D, Dhar S (1999) Switched-capacitor DC-DC converters for low-power on-chip applications. IEEE Power Electronics Specialists Conference 1:54–59

    Google Scholar 

  • Mitcheson PD, Stark BH, Miao P, Yeatman EM, Holmes A, Green T (2003) Analysis and Optimisation of MEMS Electrostatic On-Chip Power Supply for Self-Powering of Slow-Moving Sensors Proc. Eurosensors 17:48–51

    Google Scholar 

  • Miyazaki M, Tanaka H, Ono G, Nagano T, Ohkubo N, Kawahara T (2004) Electric-energy generation through variable-capacitive resonator for power-free LSI. IEICE Transaction on Electronics:549–555

    Google Scholar 

  • Paradiso JA (2006) Systems for human-powered mobile computing. ACM IEEE Design Automation 645–650

    Google Scholar 

  • Pletcher NM (2004) Micro Power Radio Frequency Oscillator Design. Thesis

    Google Scholar 

  • Polastre J, Hill J, Culler D (2004) Versatile low power media access for wireless sensor networks. Sensys:95–100

    Google Scholar 

  • Polastre J, Szewczyk R, Culler D (2005) Telos: enabling ultra-low power wireless research. Information Processing in Sensor Networks 364–369

    Google Scholar 

  • Roundy S (2005) On the effectiveness of vibration-based energy harvesting. J Intel Mat Syst Str:809–823

    Google Scholar 

  • Roundy S, Otis B, Chee YH, Rabaey J, Wright P (2003) A 1.9 GHz RF transmit beacon using environmentally scavenged energy. IEEE Int. Symposium on Low Power Elec and Devices

    Google Scholar 

  • Roundy S, Steingart D, Frechette L, Wright P (2004) Power sources for wireless sensor networks. Lecture Notes in Computer Science 2920:1–17

    Article  Google Scholar 

  • Roundy S, Wright P (2004) A piezoelectric vibration based generator for wireless electronics. Smart Materials & Structures 13:1131–1142

    Article  Google Scholar 

  • Schneider MH, Evans JW, Wright PK, Ziegler D (2006) Designing a thermoelectrically powered wireless sensor network for monitoring aluminium smelters. P I Mech Eng E-J Pro:181–190

    Google Scholar 

  • Shnayder V, Hempstead M, Chen B, Allen GW, Welsh M (2004) Simulating the power consumption of large-scale sensor network applications. 2nd international conference on Embedded networked sensors

    Google Scholar 

  • Smith A (1998) Radio frequency principles and applications: the generation, propagation, and reception of signals and noise, Wiley-IEEE Press Hobken, NJ 236pp

    Google Scholar 

  • Starner T (1996) Human-powered wearable computing. IBM Systems Journal vol. 35, pp 618–629

    Article  Google Scholar 

  • Starner T, Paradiso JA (2004) Human generated power for mobile electronics. Low Power Electronics Design, CRC Press, Boston

    Google Scholar 

  • Steingart D, Ho CC, Salminen J, Evans JW, et al. (2007) Dispenser printing of solid polymer-ionic liquid electrolytes for lithium ion cells. Polymers and Adhesives in Microelectronics and Photonics 2007:261–264

    Article  Google Scholar 

  • Stordeur M, Stark I (1997) Low power thermoelectric generator-self-sufficient energy supply for micro systems. Thermoelectrics 1997:575–577

    Google Scholar 

  • Warneke B, Scott MD, Leibowitz BS, Zhou L (2002) An autonomous 16 mm 3 solar-powered node for distributed wireless sensor networks. Proceedings of Sensors’ 02

    Google Scholar 

  • Werner-Allen G, Johnson J, Ruiz M, Lees J, Welsh M (2005) Monitoring volcanic eruptions with a wireless sensor network. Wireless Sensor Networks, Proceedings of the Second European Workshop on Wireless Sensor Networks, pp. 108–120

    Google Scholar 

  • Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sensors & Actuators: A. Physical 52:8–11

    Article  Google Scholar 

  • Yaralioglu GG, Ergun AS, Bayram B, Haeggstrom E, Khuri-Yakub BT (2003) Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers. IEEE Transaction on Ultrasonic Ferroelectrics and Frequency:449–456

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Steingart, D. (2009). Power Sources for Wireless Sensor Networks. In: Priya, S., Inman, D.J. (eds) Energy Harvesting Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76464-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76464-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76463-4

  • Online ISBN: 978-0-387-76464-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics