Skip to main content

Liquid Electrolytes

  • Chapter
  • 7262 Accesses

Most current battery systems have solid electrodes, separated by liquid electrolytes. Aside from considerations such as the magnitude of the ionic conductivity of liquids typically being considerably greater than those of solids, one of the major advantages of this arrangement is that the presence of the liquid reduces problems resulting from the volume changes that typically result from the changes in the composition of the electrode materials as they are charged and discharged.

A major consideration in connection with electrolytes has to do with the range of potentials over which they are stable. An obvious example of this is the fact that aqueous electrolytes cannot be used with negative electrodes that have high lithium activities. Organic solvent electrolytes must be used instead.

Keywords

  • Ionic Liquid
  • Molten Salt
  • Liquid Electrolyte
  • Aqueous Electrolyte
  • Negative Electrode

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-76424-5_14
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-76424-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)

    CrossRef  Google Scholar 

  2. R.J. Heus and J.J. Egan, J. Phys. Chem. 77, 1989 (1973)

    CrossRef  CAS  Google Scholar 

  3. R.N. Seefurth and R.A. Sharma, J. Electrochem. Soc. 122, 1049 (1975)

    CrossRef  CAS  Google Scholar 

  4. G. Deublein and R.A. Huggins, unpublished results (1986)

    Google Scholar 

  5. W. Weppner and R.A. Huggins, J. Electrochem. Soc. 124, 35 (1977)

    CrossRef  CAS  Google Scholar 

  6. W. Weppner and R.A. Huggins, Thermodynamic Stability of the Solid and Molten electrolyte LiAlCl4, in Fast Ion Transport in Solids, ed. by P. Vashishta, J.N. Mundy and G.K. Shenoy, North-Holland, New York (1979), p. 475

    Google Scholar 

  7. I.D. Raistrick and R.A. Huggins, Use of Lithium Aluminum Chloride Molten Salt as an Electrolyte in Lithium Cells, in Proceedings of the Fourth International Symposium on Molten Salts, ed. by M. Blander, D.S. Newman, G. Mamantov, M.L. Saboungi and K. Johnson, Electrochemical Society, Pennington, NJ (1984), p. 82

    Google Scholar 

  8. G. Deublein, Personal communication (2007)

    Google Scholar 

  9. N.A. Godshall, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 131, 543 (1984)

    CrossRef  CAS  Google Scholar 

  10. E. Peled, J. Electrochem. Soc. 126, 2047 (1979)

    CrossRef  CAS  Google Scholar 

  11. R. Fong, U. von Sacken and J.R. Dahn, J. Electrochem. Soc. 137, 2009 (1990)

    CrossRef  CAS  Google Scholar 

  12. J.O. Besenhard and H.P. Fritz, J. Electroanal. Chem. 53, 329 (1974)

    CrossRef  CAS  Google Scholar 

  13. J.-M. Tarascon and D. Guyomard, J. Electrochem. Soc. 140, 3071 (1993)

    CrossRef  Google Scholar 

  14. J.-M. Tarascon and D. Guyomard, Solid State Ionics 69, 293 (1994)

    CrossRef  CAS  Google Scholar 

  15. K. Xu, Chem. Rev. 104, 4303 (2004)

    CrossRef  CAS  Google Scholar 

  16. J. Barthel and H.J. Gores, in Handbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, New York (1999), p. 457

    Google Scholar 

  17. K. Xu, S. Zhang, T.R. Jow, W. Xu and C.A. Angell, Electrochem. Solid State Lett. 5, A26 (2002)

    CrossRef  CAS  Google Scholar 

  18. J. Jiang, H. Fortier, J.N. Reimers and J.R. Dahn, J. Electrochem. Soc. 151, A609 (2004)

    CrossRef  CAS  Google Scholar 

  19. J.H. Shin and E.J. Cairns, Rechargeable Li Metal Cells Using N-Methyl-N-butyl pyrrolidinium Bis(trifluoromethane sulfonyl)imide Electrolyte Incorporating Polymer Additives, Presented at Focussed Battery Technology Workshop III, Pasadena (2008)

    Google Scholar 

  20. N. Agmon, Chem. Phys. Lett. 244, 456 (1995)

    CrossRef  CAS  Google Scholar 

  21. W.G. Grot, US Patent 3,770,567 (1971)

    Google Scholar 

  22. K.-D. Kreuer, Chem. Mater. 8, 610 (1996)

    CrossRef  CAS  Google Scholar 

  23. K.A. Mauritz and R.B. Moore, Chem. Rev. 104, 4535 (2004)

    CrossRef  CAS  Google Scholar 

  24. K.-D. Kreuer, S.J. Paddison, E. Spohr and M. Schuster, Chem. Rev. 104, 4637 (2004)

    CrossRef  CAS  Google Scholar 

  25. J.S. Wainright, J.T. Wang, D. Weng, R.F. Savinel and M. Litt, J. Electrochem. Soc. 142, L121 (1995)

    CrossRef  CAS  Google Scholar 

  26. L. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press, Ithaca, NY (1939), p. 60

    Google Scholar 

  27. G. Deublein, B.Y. Liaw and R.A. Huggins, Solid State Ionics 28–30, 1078 (1988)

    CrossRef  Google Scholar 

  28. G. Deublein and R.A. Huggins, unpublished results

    Google Scholar 

  29. R.A. Huggins, J. Power Sources 22, 341 (1988)

    CrossRef  CAS  Google Scholar 

  30. R.A. Huggins, in Fast Ion Transport in Solids, ed. by B. Scrosati, et al., Kluwer, Amsterdam (1993), p. 143

    Google Scholar 

  31. R.A. Huggins, in Handbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, New York (1999), p. 359.

    Google Scholar 

  32. R.A. Huggins, J. Power Sources, 81–82, 13 (1999)

    CrossRef  Google Scholar 

  33. C.J. Wen and R.A. Huggins, J. Solid State Chem. 37, 271 (1981)

    CrossRef  CAS  Google Scholar 

  34. G. Deublein and R.A. Huggins, J. Electrochem. Soc. 136, 2234 (1989)

    CrossRef  CAS  Google Scholar 

  35. G. Deublein, B.Y. Liaw and R.A. Huggins, Solid State Ionics 28–30, 1660 (1988)

    CrossRef  Google Scholar 

  36. B.Y. Liaw, G. Deublein and R.A. Huggins, J. Alloys Compounds 189, 175 (1992)

    CrossRef  CAS  Google Scholar 

  37. G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)

    CrossRef  Google Scholar 

  38. C.M. Luedecke, G. Deublein and R.A. Huggins, in Hydrogen Energy Progress V, ed. by T.N. Veziroglu and J.B. Taylor, Pergamon Press, New York (1984), p. 1421

    Google Scholar 

  39. C.M. Luedecke, G. Deublein and R.A. Huggins, J. Electrochem. Soc. 132, 52 (1985)

    CrossRef  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Liquid Electrolytes. In: Advanced Batteries. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76424-5_14

Download citation