• Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Asymptotic Expansion Bias Correction Poisson Case Nontrivial Term Binomial Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anscombe, F. (1948). Transformation of Poisson, Binomial, and Negative Binomial data, Biometrika, 35, 246–254.zbMATHMathSciNetGoogle Scholar
  2. Bar-Lev, S. and Enis, P. (1990). On the construction of classes of variance stabilizing transformations, Stat. Prob. Lett., 2, 95–100.CrossRefMathSciNetGoogle Scholar
  3. Bartlett, M.S. (1947). The use of transformations, Biometrics, 3, 39–52.CrossRefMathSciNetGoogle Scholar
  4. Bickel, P. and Doksum, K. (1981). An analysis of transformations revisited, J. Am. Stat. Assoc., 76(374), 296–311.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Brown, L., Cai, T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statist. Sci., 16, 2, 101–133.zbMATHMathSciNetGoogle Scholar
  6. Brown, L., Cai, T., and DasGupta, A. (2006). On selecting an optimal transformation, preprint.Google Scholar
  7. Curtiss, J.H. (1943). On transformations used in the analysis of variance, Ann. Math. Stat., 14, 107–122.CrossRefMathSciNetGoogle Scholar
  8. DiCiccio, T. and Stern, S.E. (1994). Constructing approximately standard normal pivots from signed roots of adjusted likelihood ratio statistics, Scand. J. Stat., 21(4), 447–460.zbMATHMathSciNetGoogle Scholar
  9. Efron, B. (1982). Transformation theory: How normal is a family of distributions?, Ann. Stat., 10(2), 323–339.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Fisher, R.A. (1954). The analysis of variance with various binomial transformations, Biometrics, 10, 130–151.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Hall, P. (1992). On the removal of skewness by transformation, J. R. Stat. Soc. Ser. B, 54(1), 221–228.Google Scholar
  12. Hotelling, H. (1953). New light on the correlation coefficient and its transforms, J. R. Stat. Soc. Ser. B, 15, 193–232.MathSciNetGoogle Scholar
  13. Sprott, D.A. (1984). Likelihood and maximum likelihood estimation, C. R. Math. Rep. Acad. Sci. Can., 6(5), 225–241.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations