Mixture Models and Nonparametric Deconvolution

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Mixture Model Finite Mixture Moment Estimate Hellinger Distance Variance Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyperbolae, Scand. J. Stat., 5, 151–157.MathSciNetzbMATHGoogle Scholar
  2. Barndorff-Nielsen, O., Kent, J., and Sorensen, M. (1982). Normal variance-mean mixtures and z distributions, Int. Stat. Rev., 50, 145–159.zbMATHMathSciNetCrossRefGoogle Scholar
  3. Basu, A., Harris, I., and Basu, S. (1997). Minimum distance estimation: the approach using density based divergences, in Handbook of Statistics, Vol. 15, Maddala, G. and Rao, C.R. (eds.), North-Holland, Amsterdam, 21–48.Google Scholar
  4. Behboodian, J. (1970). On a mixture of normal distributions, Biometrika, 57 (1), 215–217.zbMATHCrossRefGoogle Scholar
  5. Beran, R. (1977). Minimum Hellinger distance estimates for parametric models, Ann. Stat., 5(3), 445–463.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Blischke, W. (1962). Moment estimators for parameters of mixtures of two Binomial distributions, Ann. Math. Stat., 33, 444–454.CrossRefMathSciNetzbMATHGoogle Scholar
  7. Bowman, K. and Shenton, L. (1973). Space of solutions for a normal mixture, Biometrika, 60, 629–636.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Carroll, R. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density, J. Am. Stat. Assoc., 83(404), 1184–1186.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Champeney, D. (2003). Handbook of Fourier Theorems, Cambridge University Press, Cambridge.Google Scholar
  10. Chen, J. (1995). Optimal rate of convergence for finite mixture models, Ann. Stat., 23(1), 221–233.zbMATHCrossRefGoogle Scholar
  11. Chen, J. and Kalbfleisch, J. (1996). Penalized minimum distance estimates in finite mixture models, Can. J. Stat., 24 (2), 167–175.zbMATHCrossRefMathSciNetGoogle Scholar
  12. Cheney, W. and Light, L. (1999). A Course in Approximation Theory, Brooks and Cole, Boston CA.Google Scholar
  13. Choi, K. and Bulgren, W. (1967). An estimation procedure for mixtures of distributions, J.R. Stat. Soc. B, 30, 444–460.MathSciNetGoogle Scholar
  14. Cohen, A.C. (1967). Estimation in mixtures of two normal distributions, Technometrics, 9(1), 15–28.zbMATHCrossRefMathSciNetGoogle Scholar
  15. Cutler, A. and Cordero-Brana, O. (1996). Minimum Hellinger distance estimation for finite mixture models, J. Am. Stat. Assoc., 91 (436), 1716–1723.zbMATHCrossRefMathSciNetGoogle Scholar
  16. Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm, with discussion, J. R. Stat. Soc. B, 39 (1), 1–38.zbMATHMathSciNetGoogle Scholar
  17. Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Stat., 19 (3), 1257–1272.zbMATHCrossRefGoogle Scholar
  18. Feller, W. (1966). An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York.zbMATHGoogle Scholar
  19. Fisher, R.A. (1921). On the probable error of a coefficient of correlation deduced from a small sample, Metron, 1, 3–32.Google Scholar
  20. Ghosal, S. and van der Vaart, A. (2001). Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities, Ann. Stat., 29 (5), 1233–1263.zbMATHCrossRefGoogle Scholar
  21. Ghosh, J. and Sen, P.K. (1985). On the asymptotic performance of the log-likelihood ratio statistic for the mixture model, in Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, L. Le Cam and R.Olshen (eds.), Wadsworth, Belmont, CA, 789–806.Google Scholar
  22. Hall, P. and Stewart, M. (2005). Theoretical analysis of power in a two component normal mixture model, J. Stat. Planning Infer., 134 (1), 158–179.zbMATHCrossRefMathSciNetGoogle Scholar
  23. Hall, P. and Titterington, D. (1984). Efficient nonparametric estimation of mixture proportions, J. R. Stat. Soc. B., 46 (3), 465–473.zbMATHMathSciNetGoogle Scholar
  24. Hall, P. and Zhou, X. (2003). Nonparametric estimation of component distributions in a multivariate mixture, Ann. Stat., 31 (1), 201–224.zbMATHCrossRefMathSciNetGoogle Scholar
  25. Hartigan, J. (1985). A failure of likelihood asymptotics for normal mixtures, in Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, L. Le Cam and R.Olshen (eds.), Wadsworth, Belmont, CA, 807–810.Google Scholar
  26. Hasselblad, V. (1966). Estimation of parameters for a mixture of normal distributions, Technometrics, 8, 431–444.CrossRefMathSciNetGoogle Scholar
  27. Hosmer, D. (1973). On MLE of the parameters of the mixture of two normal distributions when the sample size is small, Commun. Stat., 1, 217–227.MathSciNetCrossRefGoogle Scholar
  28. Jewell, N. (1982). Mixtures of exponential distributions, Ann. Stat., 10, 479–484.zbMATHCrossRefMathSciNetGoogle Scholar
  29. John, S. (1970). On identifying the population of origin of each observation in a mixture of observations from two gamma populations, Technometrics, 12, 565–568.CrossRefGoogle Scholar
  30. Johnson, N. and Kotz, S. (1969). Distributions in Statistics: Continuous Univariate Distributions, Vol. 2, Houghton Mifflin, Boston.Google Scholar
  31. Kabir, A. (1968). Estimation of parameters of a finite mixture of distributions, J. R. Stat. Soc. B, 30, 472–482.Google Scholar
  32. Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters, Ann. Math. Stat., 27, 887–906.CrossRefMathSciNetzbMATHGoogle Scholar
  33. Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution, J. Am. Stat. Assoc., 73, 805–811.zbMATHCrossRefMathSciNetGoogle Scholar
  34. Lambert, D. and Tierney, L. (1984). Asymptotic properties of maximum likelihood estimates in the mixed Poisson model, Ann. Stat., 12(4), 1388–1399.zbMATHCrossRefMathSciNetGoogle Scholar
  35. Lindsay, B. (1983a). The geometry of mixture likelihoods: a general theory, Ann. Stat., 11 (1), 86–94.zbMATHCrossRefMathSciNetGoogle Scholar
  36. Lindsay, B. (1983b). The geometry of mixture likelihoods II: the Exponential family, Ann. Stat., 11(3), 783–792.zbMATHCrossRefMathSciNetGoogle Scholar
  37. Lindsay, B. (1995). Mixture Models: Theory, Geometry, and Applications, NSF-CBMS Series in Probability and Statistics, Institute of Mathematical Statistics, Hayward, CA.Google Scholar
  38. Lindsay, B. and Basak, P. (1993). Multivariate normal mixtures: a fast consistent method of moments, J. Am. Stat. Assoc., 88 (422), 468–476.zbMATHCrossRefMathSciNetGoogle Scholar
  39. McLachlan, G. and Peel, D. (2000). Finite Mixture Models, John Wiley, New York.zbMATHGoogle Scholar
  40. Pearson, K. (1894). Contributions to the mathematical theory of evolution, Philos. Trans. R. Soc. A, 185, 71–110.CrossRefGoogle Scholar
  41. Peters, B. and Walker, H. (1978). An iterative procedure for obtaining maximum likelihood estimates of the parameters for a mixture of normal distributions, SIAM J. Appl. Math., 35, 362–378.zbMATHCrossRefMathSciNetGoogle Scholar
  42. Pfanzagl, J. (1988). Consistency of maximum likelihood estimators for certain nonparametric families, in particular mixtures, J. Stat. Planning Infer., 19(2), 137–158.Google Scholar
  43. Prentice, R. (1975). Discrimination among some parametric models, Biometrika, 62, 607–614.zbMATHCrossRefMathSciNetGoogle Scholar
  44. Redner, R. (1981). Consistency of the maximum likelihood estimate for nonidentifiable distributions, Ann. Stat., 9(1), 225–228.Google Scholar
  45. Redner, R. and Walker, H. (1984). Mixture densities, maximum likelihood, and the EM algorithm, SIAM Rev., 26 (2), 195–240.zbMATHCrossRefMathSciNetGoogle Scholar
  46. Rider, P. (1962). Estimating the parameters of mixed Poisson, binomial, and Weibull distributions by the method of moments, Bull. Int. Stat. Inst., 39(2), 225–232.zbMATHGoogle Scholar
  47. Roeder, K. (1992). Semiparametric estimation of normal mixture densities, Ann. Stat., 20(2), 929–943.Google Scholar
  48. Roeder, K. and Wasserman, L. (1997). Practical Bayesian density estimation using mixtures of normals, J. Am. Stat. Assoc., 92 (439), 894–902.zbMATHCrossRefMathSciNetGoogle Scholar
  49. Simar, L. (1976). Maximum likelihood estimation of a compound Poisson process, Ann. Stat., 4, 1200–1209.Google Scholar
  50. Stefanski, L. and Carroll, R. (1990). Deconvoluting kernel density estimators, Statistics, 21 (2), 169–184.zbMATHCrossRefMathSciNetGoogle Scholar
  51. Tamura, R. and Boos, D. (1986). Minimum Hellinger distance estimation for multivariate location and covariance, J. Am. Stat. Assoc., 81 (393), 223–229.zbMATHCrossRefMathSciNetGoogle Scholar
  52. Teicher, H. (1961). Identifiability of mixtures, Ann. Math. Stat., 32, 244–248.Google Scholar
  53. Titterington, D., Smith, A., and Makov, U. (1985). Statistical Analysis of Finite Mixture Distributions, John Wiley, New York.Google Scholar
  54. van de Geer, S. (1996). Rates of convergence for the maximum likelihood estimator in mixture models, J. Nonparamet. Stat., 6, 293–310.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations