Permutation Tests

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basu, D. (1980). Randomization analysis of experimental data: The Fisher randomization test, J. Am. Stat. Assoc., 371, 575–595.CrossRefGoogle Scholar
  2. Bickel, P.J. and van Zwet, W. (1978). Asymptotic expansions for the power of distribution-free tests in the two sample problem, Ann. Stat., 6(5), 937–1004.zbMATHCrossRefGoogle Scholar
  3. Fisher, R.A. (1935). Design of Experiments, Oliver and Boyd, Edinburgh.Google Scholar
  4. Gebhard, J. and Schmitz, N. (1998). Permutation tests - a revival?, Stat. Papers, 39(1), 75–85.zbMATHMathSciNetCrossRefGoogle Scholar
  5. Good, P.I. (2005). Permutation, Parametric and Bootstrap Tests of Hypotheses, Springer-Verlag, New York.zbMATHGoogle Scholar
  6. Lehmann, E.L. (1986). Testing Statistical Hypotheses, John Wiley, New York.zbMATHGoogle Scholar
  7. Romano, J. (1989). Bootstrap and randomization tests of some nonparametric hypotheses, Ann. Stat., 17(1), 141–159.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Rotman, J. (1994). An Introduction to the Theory of Groups, Springer-Verlag, New York.Google Scholar
  9. Runger, G.C. and Eaton, M.L. (1992). Most powerful invariant permutation tests, J. Multivar.Anal., 42(2), 202–209.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations