Goodness of Fit with Estimated Parameters

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Gaussian Process Asymptotic Distribution Random Cell Asymptotic Null Distribution Empirical Characteristic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beran, R. and Millar, P.W. (1989). A stochastic minimum distance test for multivariate parametric models, Ann. Stat., 17(1), 125–140.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Boos, D. (1981). Minimum distance estimators for location and goodness of fit, J. Am. Stat. Assoc., 76(375), 663–670.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Brown, L., DasGupta, A., Marden, J.I., and Politis, D. (2004). Characterizations, sub and resampling, and goodness of fit, in Festschrift for Herman Rubin IMS Lecture Notes Monograph Series, A. Dasgupta (eds.) Vol. 45, Institute of Mathematical Statistics, Beachwood, OH, 180–206.Google Scholar
  4. Chernoff, H. and Lehmann, E.L. (1954). The use of maximum likelihood estimates in chisquare tests for goodness of fit, Ann. Math. Stat., 25, 579–586.CrossRefMathSciNetGoogle Scholar
  5. Csörgo, M. (1974). On the Problem of Replacing Composite Hypotheses by Equivalent Simple Ones, Colloquia of Mathematical Society Janos Bolyai, Vol. 9, North-Holland, Amsterdam.Google Scholar
  6. Csörgo, S. (1984). Testing by Empirical Characteristic Functions: A Survey, Asymptotic Statistics, Vol. 2, Elsevier, Amsterdam.Google Scholar
  7. del Bario, E., Deheuvels, P., and van de Geer, S. (2007). Lectures on Empirical Processes, European Mathematical Society, Zurich.Google Scholar
  8. Hall, P. and Welsh, A. (1983). A test for normality based on the empirical characteristic function, Biometrika, 70(2), 485–489.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Moore, D.S. and Spruill, M.C. (1975). Unified large sample theory of general chi-square statistics for tests of fit, Ann. Stat., 3, 599–616.zbMATHMathSciNetGoogle Scholar
  10. Mudholkar, G. and Lin, C.T. (1987). On Two Applications of Characterization Theorems to Goodness-of-Fit, Colloquia of Mathematical Society Janos Bolyai, Vol. 45, North-Holland, Amsterdam.Google Scholar
  11. Neuhaus, G. (1979). Asymptotic theory of goodness of fit tests when parameters are present: a survey, Math. Operationforsch. Stat. Ser. Stat.,10(3), 479–494.zbMATHMathSciNetGoogle Scholar
  12. Stephens, M.A. (1976). Asymptotic results for goodness-of-fit statistics with unknown parameters, Ann. Stat., 4(2), 357–369.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Stuart, A. and Ord, K. (1991). Kendall’s Theory of Statistics, 4th ed.,Vol. II, Clarendon Press, New York.zbMATHGoogle Scholar
  14. van der Vaart, A. (1998). Asymptotic Statistics, Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  15. Verdinelli, I. and Wasserman, L. (1998). Bayesian goodness-of-fit testing using infinite dimensional Exponential families, Ann. Stat., 26(4), 1215–1241.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations