Metrics, Information Theory, Convergence, and Poisson Approximations

  • Anirban DasGupta
Part of the Springer Texts in Statistics book series (STS)


Central Limit Theorem Fisher Information Dependent Random Variable Triangular Array Hellinger Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arratia, R., Goldstein, L., and Gordon, L. (1990). Poisson approximation and the Chen-Stein method, Stat. Sci., 5(4), 403–434.zbMATHMathSciNetGoogle Scholar
  2. Barbour, A., Chen, L., and Loh, W-L. (1992). Compound Poisson approximation for non-negative random variables via Stein’s method, Ann. Prob., 20, 1843–1866.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Barbour, A., Holst, L., and Janson, S. (1992). Poisson Approximation, Clarendon Press, New York.Google Scholar
  4. Barron, A. (1986). Entropy and the central limit theorem, Ann. Prob., 14(1), 336–342.zbMATHCrossRefMathSciNetGoogle Scholar
  5. Boos, D. (1985). A converse to Scheffe’s theorem, Ann. Stat., 1, 423–427.CrossRefMathSciNetGoogle Scholar
  6. Brown, L. (1982). A proof of the central limit theorem motivated by the Cramér-Rao inequality, G. Kallianpur, P.R. Krishnaiah, and J.K. Ghosh Statistics and Probability, Essays in Honor of C.R. Rao, North-Holland, Amsterdam, 141–148.Google Scholar
  7. Brown, L., DasGupta, A., Haff, L.R., and Strawderman, W.E. (2006). The heat equation and Stein’s identity: Connections, applications, J. Stat. Planning Infer, Special Issue in Memory of Shanti Gupta, 136, 2254–2278.zbMATHMathSciNetGoogle Scholar
  8. Chen, L.H.Y. (1975). Poisson approximation for dependent trials, Ann. Prob., 3, 534–545.zbMATHCrossRefGoogle Scholar
  9. DasGupta, A. (1999). The matching problem and the Poisson approximation, Technical Report, Purdue University.Google Scholar
  10. DasGupta, A. (2005). The matching, birthday, and the strong birthday problems: A contemporary review, J. Stat. Planning Infer, Special Issue in Honor of Herman Chernoff, 130, 377–389.zbMATHGoogle Scholar
  11. Dembo, A. and Rinott, Y. (1996). Some examples of normal approximations by Stein’s method, in Random Discrete Structures, D. Aldous and Pemantle R. IMA Volumes in Mathematics and Its Applications, Vol. 76, Springer, New York, 25–44.Google Scholar
  12. Diaconis, P. and Holmes, S. (2004). Stein’s Method: Expository Lectures and Applications, IMS Lecture Notes Monograph Series, vol. 46, Institute of Mathematical Statistics, Beachwood, OH.Google Scholar
  13. Dudley, R. (1989). Real Analysis and Probability, Wadsworth, Pacific Grove, CA.zbMATHGoogle Scholar
  14. Galambos, J. and Simonelli, I. (1996). Bonferroni-Type Inequalities with Applications, Springer, New York.zbMATHGoogle Scholar
  15. Hwang, J.T. (1982). Improving upon standard estimators in discrete exponential families with applications to Poisson and negative binomial cases, Ann. Stat., 10(3), 857–867.zbMATHCrossRefGoogle Scholar
  16. Johnson, O. (2004). Information Theory and the Central Limit Theorem, Imperial College Press, Yale University London.Google Scholar
  17. Johnson, O. and Barron, A. (2003). Fisher information inequalities and the central limit theorem, Technical Report.Google Scholar
  18. Kolchin, V., Sevas’tyanov, B., and Chistyakov, V. (1978). Random Allocations,V.H. Winston & Sons, Washington, distributed by Halsted Press, New York.Google Scholar
  19. LeCam, L. (1960). An approximation theorem for the Poisson binomial distribution, Pac. J. Math., 10, 1181–1197.MathSciNetGoogle Scholar
  20. Linnik, Y. (1959). An information theoretic proof of the central limit theorem, Theory Prob. Appl., 4, 288–299.MathSciNetGoogle Scholar
  21. Rachev, S. (1991). Probability Metrics and the Stability of Stochastic Models, JohnWiley, Chichester.zbMATHGoogle Scholar
  22. Reiss, R. (1989). Approximate Distributions of Order Statistics, with Applications to Nonparametric Statistics, Springer-Verlag, New York.zbMATHGoogle Scholar
  23. Sevas’tyanov, B.A. (1972). A limiting Poisson law in a scheme of sums of dependent random variables, Teor. Veroyatni. Primen., 17, 733–738.Google Scholar
  24. Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, L. Le Cam, J. Neyman, and E. Scott in Proceedings of the Sixth Berkeley Symposium, Vol. 2, University of California Press, Berkeley, 583–602.Google Scholar
  25. Stein, C. (1981). Estimation of the mean of a multivariate normal distribution, Ann. Stat., 9, 1135–1151.zbMATHCrossRefGoogle Scholar
  26. Stein, C. (1986). Approximate Computations of Expectations, Institute of Mathematical Statistics, Hayward, CA.Google Scholar
  27. Sweeting, T. (1986). On a converse to Scheffe’s theorem, Ann. Stat., 3, 1252–1256.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations