Advertisement

Saddlepoint Approximations

  • Anirban DasGupta
Chapter
Part of the Springer Texts in Statistics book series (STS)

Keywords

Tail Probability Quantile Approximation Saddlepoint Approximation Edgeworth Expansion Tail Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arevalillo, J. (2003). Inverting a saddlepoint approximation, Stat. Prob. Lett., 61, 421–428.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Barndorff-Nielsen, O.E. (1983). On a formula for the distribution of the maximum likelihood estimator, Biometrika, 70, 343–365.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Barndorff-Nielsen, O.E. and Cox, D.R. (1979). Edgeworth and saddlepoint approximations with statistical applications, J.R. Stat. Soc. Ser. B, 41, 279–312.zbMATHMathSciNetGoogle Scholar
  4. Barndorff-Nielsen, O.E. and Cox, D.R. (1989). Asymptotic Techniques for Use in Statistics, Chapman and Hall, London.zbMATHGoogle Scholar
  5. Daniels, H.E. (1954). Saddlepoint approximations in statistics, Ann. Math. Stat., 25, 631–650.CrossRefMathSciNetzbMATHGoogle Scholar
  6. Daniels, H.E. (1987). Tail probability approximations, Int. Stat. Rev., 55, 37–48.zbMATHMathSciNetCrossRefGoogle Scholar
  7. Good, I.J. (1957). Saddlepoint methods for the multinomial distribution, Ann. Math. Stat., 28, 861–881.CrossRefMathSciNetGoogle Scholar
  8. Goutis, C. and Casella, G. (1999). Explaining the saddlepoint approximation, Am. Stat., 53(3), 216–224.CrossRefMathSciNetGoogle Scholar
  9. Hall, P. (1983a). Inverting an Edgeworth expansion, Ann. Stat., 11(2), 569–576.zbMATHCrossRefGoogle Scholar
  10. Hall, P. (1983b). Chi-square approximations to the distribution of a sum of independent random variables, Ann. Prob., 11, 1028–1036.zbMATHCrossRefGoogle Scholar
  11. Jensen, J.L. (1995). Saddlepoint Approximations, Oxford University Press, Oxford.Google Scholar
  12. Kolassa, J. (2003). Multivariate saddlepoint tail probability approximations, Ann. Stat., 31(1), 274–286.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Lugannani, R. and Rice, S. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables, Adv. Appl. Prob., 12, 475–490.zbMATHCrossRefMathSciNetGoogle Scholar
  14. Ma, C. and Robinson, J. (1998). Saddlepoint approximation for sample and bootstrap quantiles, Aust. N. Z. J. Stat., 40(4), 479–486.zbMATHCrossRefMathSciNetGoogle Scholar
  15. McCullagh, P. (1987). Tensor Methods in Statistics, Chapman and Hall, London.zbMATHGoogle Scholar
  16. Olver, F.J. (1997). Asymptotics and Special Functions, A.K. Peters Ltd., Wellesley, MA.zbMATHGoogle Scholar
  17. Reid, N. (1988). Saddlepoint methods and statistical inference, Stat. Sci., 3(2), 213–227.zbMATHCrossRefGoogle Scholar
  18. Wood, A.T.A. (2000). Laplace/saddlepoint approximations, in Symposium in Honour of Ole E. Barndorff-Nielsen, Memoirs, Vol. 16, University of Aarhus, 110–115.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anirban DasGupta
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest Lafayette

Personalised recommendations