Skip to main content

Inverse Polarization Raytracing: Estimating Surface Shapes of Transparent Objects

  • Chapter

We propose a novel method for estimating the surface shapes of transparent objects by analyzing the polarization state of the light. Existing methods do not fully consider the reflection, refraction, and transmission of the light occurring inside a transparent object. We employ a polarization raytracing method to compute both the path of the light and its polarization state. Our proposed iterative computation method estimates the surface shape of the transparent object by minimizing the difference between the polarization data rendered by the polarization raytracing method and the polarization data obtained from a real object.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Koshikawa and Y. Shirai, “A model-based recognition of glossy objects using their polarimetrical properties,” Advanced Robotics, Vol. 2, No. 2, pp. 137-147, 1987.

    Article  Google Scholar 

  2. L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. 13, No. 7, pp. 635-657, 1991.

    Article  Google Scholar 

  3. S. Rahmann and N. Canterakis, “Reconstruction of specular surfaces using polarization imaging,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 149-155, 2001.

    Google Scholar 

  4. O. Drbohlav and R. Šára, “Unambiguous determination of shape from photometric stereo with unknown light sources,” Proc. IEEE Int’l Conf. Computer Vision, pp. I:581-586, 2001.

    Google Scholar 

  5. D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” Proc. IEEE Int’l Conf. Computer Vision, pp. 982-987, 2003.

    Google Scholar 

  6. M. Saito, Y. Sato, K. Ikeuchi, and H. Kashiwagi, “Measurement of surface orientations of transparent objects by use of polarization in highlight,” J. Opt. Soc. Am. A, Vol. 16, No. 9, pp. 2286-2293, 1999.

    Article  Google Scholar 

  7. D. Miyazaki, M. Saito, Y. Sato, and K. Ikeuchi, “Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths,” J. Opt. Soc. Am. A, Vol. 19, No. 4, pp. 687-694, 2002.

    Article  Google Scholar 

  8. D. Miyazaki, M. Kagesawa, and K. Ikeuchi, “Transparent surface modeling from a pair of polarization images,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. 26, No. 1, pp. 73-82, 2004.

    Article  Google Scholar 

  9. H. Murase, “Surface shape reconstruction of a nonrigid transparent object using refraction and motion,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. 14, No. 10, pp. 1045-1052, 1992.

    Article  Google Scholar 

  10. S. Hata, Y. Saitoh, S. Kumamura, and K. Kaida, “Shape extraction of transparent object using genetic algorithm,” Proc. Int’l Conf. Pattern Recognition, pp. 684-688, 1996.

    Google Scholar 

  11. K. Ohara, M. Mizukawa, K. Ohba, and K. Taki, “3D modeling of micro transparent object with integrated vision,” Proc. IEEE Conf. Multisensor Fusion and Integration for Intelligent Systems, pp. 107-112, 2003.

    Google Scholar 

  12. M. Ben-Ezra and S. K. Nayar, “What does motion reveal about transparency?,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1025-1032, 2003.

    Google Scholar 

  13. K. N. Kutulakos, “Refractive and specular 3D shape by light-path triangulation,” Proc. Int’l Symposium on the CREST Digital Archiving Project, pp. 86-93, 2005.

    Google Scholar 

  14. D. E. Zongker, D. M. Warner, B. Curless, and D. H. Salesin, “Environmental matting and compositing,” Proc. SIGGRAPH, pp. 205-214, 1999.

    Google Scholar 

  15. Y. Chuang, D. E. Zongker, J. Hindorff, B. Curless, D. H. Salesin, and R. Szeliski, “Environment matting extensions: towards higher accuracy and real-time capture,” Proc. SIGGRAPH, pp. 121-130, 2000.

    Google Scholar 

  16. Z. S. Hakura and J. M. Snyder, “Realistic reflections and refractions on graphics hardware with hybrid rendering and layered environment maps,” Proc. Eurographics Workshop on Rendering, pp. 289-300, 2001.

    Google Scholar 

  17. W. Matusik, H. Pfister, R. Ziegler, A. Ngan, and L. McMillan, “Acquisition and rendering of transparent and refractive objects,” Proc. Eurographics Workshop on Rendering, pp. 267-278, 2002.

    Google Scholar 

  18. Y. Wexler, A. W. Fitzgibbon, and A. Zisserman, “Image-based environment matting,” Proc. Eurographics Workshop on Rendering, pp. 279-290, 2002.

    Google Scholar 

  19. P. Peers and P. Dutré, “Wavelet environment matting,” Proc. Eurographics Workshop on Rendering, pp. 157-166, 2003.

    Google Scholar 

  20. Y. Y. Schechner, J. Shamir, and N. Kiryati, “Polarization and statistical analysis of scenes containing a semireflector,” J. Opt. Soc. Am. A, Vol. 17, No. 2, pp. 276-284, 2000.

    Article  Google Scholar 

  21. Y. Y. Schechner, N. Kiryati, and R. Basri, “Separation of transparent layers using focus,” Int’l J. Computer Vision, Vol. 39, No. 1, pp. 25-39, 2000.

    Article  MATH  Google Scholar 

  22. R. Szeliski, S. Avidan, and P. Anandan, “Layer extraction from multiple images containing reflections and transparency,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 246-253, 2000.

    Google Scholar 

  23. H. Farid and E. H. Adelson, “Separating reflections from images by use of independent component analysis,” J. Opt. Soc. Am. A, Vol. 16, No. 9, pp. 2136-2145, 1999.

    Article  Google Scholar 

  24. M. Born and E. Wolf, Principles of optics, Pergamon Press, 1959.

    Google Scholar 

  25. W. A. Shurcliff, Polarized light: production and use, Harvard University Press, 1962.

    Google Scholar 

  26. R. A. Chipman, “Mechanics of polarizaiton ray tracing,” Optical Engineering, Vol. 34, No. 6, pp. 1636-1645, 1995.

    Article  Google Scholar 

  27. L. B. Wolff and D. J. Kurlander, “Ray tracing with polarization parameters,” IEEE Computer Graphics and Applications, Vol. 10, No. 6, pp. 44-55, 1990.

    Article  Google Scholar 

  28. C. Gu and P. Yeh, “Extended Jones matrix method. II,” J. Opt. Soc. Am. A, Vol. 10, No. 5, pp. 966-973, 1993.

    Article  Google Scholar 

  29. J. S. Gondek, G. W. Meyer, and J. G. Newman, “Wavelength dependent reflectance functions,” Proc. SIGGRAPH, pp. 213-220, 1994.

    Google Scholar 

  30. D. C. Tannenbaum, P. Tannenbaum, and M. J. Wozny, “Polarization and birefringency considerations in rendering,” Proc. SIGGRAPH, pp. 221-222,1994.

    Google Scholar 

  31. A. Wilkie, R. F. Tobler, and W. Purgathofer, “Combined rendering of polarization and fluorescence effects,” Proc. Eurographics Workshop on Rendering, pp. 197-204, 2001.

    Google Scholar 

  32. S. Guy and C. Soler, “Graphics gems revisited: fast and physically-based rendering of gemstones,” Proc. SIGGRAPH, pp. 231-238, 2004.

    Google Scholar 

  33. LightTools, http://www.opticalres.com/.

  34. ZEMAX, http://www.zemax.com/.

  35. OptiCAD, http://www.opticad.com/.

  36. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C: the art of scientific computing, Cambridge University Press, 1992.

    Google Scholar 

  37. K. Ikeuchi, “Reconstructing a depth map from intensity maps,” Proc. Int’l Conf. Pattern Recognition, pp. 736-738, 1984.

    Google Scholar 

  38. B. K. P. Horn, “Height and Gradient from Shading,” Int’l J. Computer Vision, Vol. 5, No. 1, pp. 37-75, 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ikeuchi, K., Miyazaki, D. (2008). Inverse Polarization Raytracing: Estimating Surface Shapes of Transparent Objects. In: Digitally Archiving Cultural Objects. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75807_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75807_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75806-0

  • Online ISBN: 978-0-387-75807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics