Skip to main content

Canonical Duality Theory: Connections between Nonconvex Mechanics and Global Optimization

  • Chapter
  • First Online:
Advances in Applied Mathematics and Global Optimization

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 17))

Summary

This chapter presents a comprehensive review and some new developments on canonical duality theory for nonconvex systems. Based on a tricanonical form for quadratic minimization problems, an insightful relation between canonical dual transformations and nonlinear (or extended) Lagrange multiplier methods is presented. Connections between complementary variational principles in nonconvex mechanics and Lagrange duality in global optimization are also revealed within the framework of the canonical duality theory. Based on this framework, traditional saddle Lagrange duality and the so-called biduality theory, discovered in convex Hamiltonian systems and d.c. programming, are presented in a unified way; together, they serve as a foundation for the triality theory in nonconvex systems. Applications are illustrated by a class of nonconvex problems in continuum mechanics and global optimization. It is shown that by the use of the canonical dual transformation, these nonconvex constrained primal problems can be converted into certain simple canonical dual problems, which can be solved to obtain all extremal points. Optimality conditions (both local and global) for these extrema can be identified by the triality theory. Some new results on general nonconvex programming with nonlinear constraints are also presented as applications of this canonical duality theory. This review brings some fundamentally new insights into nonconvex mechanics, global optimization, and computational science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthurs, A.M. (1980). Complementary Variational Principles, Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Atai, A.A. and Steigmann, D. (1998). Coupled deformations of elastic curves and surfaces, Int. J. Solids Struct. 35, 1915–1952.

    Article  MathSciNet  MATH  Google Scholar 

  • Aubin, J.P. and Ekeland, I. (1976). Estimates of the duality gap in nonconvex optimization, Math. Oper. Res. 1 (3), 225–245.

    MathSciNet  MATH  Google Scholar 

  • Auchmuty, G. (1983). Duality for non-convex variational principles, J. Diff. Equations 50, 80–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Auchmuty, G. (1986). Dual variational principles for eigenvalue problems, Proceedings of Symposia in Pure Math., 45, Part 1, 55–71.

    MathSciNet  Google Scholar 

  • Auchmuty, G. (2001). Variational principles for self-adjoint elliptic eigenproblems, in Nonconvex/Nonsmooth Mechanics: Modelling, Methods and Algorithms, D.Y. Gao, R.W. Ogden, and G. Stavroulakis, eds., Kluwer Academic.

    Google Scholar 

  • Benson, H. (1995). Concave minimization: Theory, applications and algorithms, in Handbook of Global Optimization, R. Horst and P. Pardalos, eds., Kluwer Academic, pp. 43–148.

    Google Scholar 

  • Casciaro, R. and Cascini, A. (1982). A mixed formulation and mixed finite elements for limit analysis, Int. J. Solids Struct. 19, 169–184.

    Google Scholar 

  • Cheng, H., Fang, S.C., and Lavery, J. (2005). Shape-preserving properties of univariate cubic L1 splines, J. Comput. Appl. Math. 174, 361–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Chien, Wei-zang (1980). Variational Methods and Finite Elements (in Chinese), Science Press.

    Google Scholar 

  • Clarke, F.H. (1983). Optimization and Nonsmooth Analysis, John Wiley, New York.

    MATH  Google Scholar 

  • Clarke, F.H. (1985). The dual action, optimal control, and generalized gradients, Mathematical Control Theory, Banach Center Publ., 14, PWN, Warsaw, pp. 109–119.

    Google Scholar 

  • Crouzeix, J.P. (1981). Duality framework in quasiconvex programming, in Generalized Convexity in Optimization and Economics, S. Schaible and W.T. Ziemba, eds., Academic Press, pp. 207–226.

    Google Scholar 

  • Dacorogna, D. (1989). Direct Methods in the Calculus of Variations, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Ekeland, I. (1977). Legendre duality in nonconvex optimization and calculus of variations, SIAM J. Control Optim., 15, 905–934.

    Article  MathSciNet  MATH  Google Scholar 

  • Ekeland, I. (1990). Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, NewYork.

    MATH  Google Scholar 

  • Ekeland, I. (2003). Nonconvex duality, in Proceedings of IUTAM Symposium on Duality, Complementarity and Symmetry in Nonlinear Mechanics, D.Y. Gao, ed., Kluwer Academic, Dordrecht/Boston/London, pp. 13–19.

    Google Scholar 

  • Ekeland, I. and Temam, R. (1976). Convex Analysis and Variational Problems, North-Holland.

    Google Scholar 

  • Floudas, C.A. and Visweswaran, V. (1995). Quadratic optimization, in Handbook of Optimization, R. Horst and P.M. Pardalos, eds., Kluwer Academic, Dordrecht, pp. 217–270.

    Google Scholar 

  • Gao, D.Y. (1986). Complementarity Principles in Nonsmooth Elastoplastic Systems and Pan-penalty Finite Element Methods, Ph.D. Thesis, Tsinghua University, Beijing, China.

    Google Scholar 

  • Gao, D.Y. (1988a). On the complementary bounding theorems for limit analysis, Int. J. Solids Struct. 24, 545–556.

    Google Scholar 

  • Gao, D.Y. (1988b). Panpenalty finite element programming for limit analysis, Computers & Structures 28, 749–755.

    Google Scholar 

  • Gao, D.Y. (1990a). Dynamically loaded rigid-plastic analysis under large deformation, Quart. Appl. Math. 48, 731–739.

    Google Scholar 

  • Gao, D.Y. (1990b). On the extremum potential variational principles for geometrical nonlinear thin elastic shell, Science in China (Scientia Sinica) (A) 33 (1), 324–331.

    Google Scholar 

  • Gao, D.Y. (1990c). On the extremum variational principles for nonlinear elastic plates, Quart. Appl. Math. 48, 361–370.

    Google Scholar 

  • Gao, D.Y.(1990d). Complementary principles in nonlinear elasticity, Science in China (Scientia Sinica) (A) (Chinese Ed.) 33 (4), 386–394.

    Google Scholar 

  • Gao, D.Y. (1990e). Bounding theorem on finite dynamic deformations of plasticity, Mech. Research Commun. 17, 33–39.

    Google Scholar 

  • Gao, D.Y. (1991). Extended bounding theorems for nonlinear limit analysis, Int. J. Solids Struct. 27, 523–531.

    Article  MATH  Google Scholar 

  • Gao, D.Y. (1992). Global extremum criteria for nonlinear elasticity, Zeit. Angew. Math. Phys. 43, 924–937.

    Article  MATH  Google Scholar 

  • Gao, D.Y. (1996a). Nonlinear elastic beam theory with applications in contact problem and variational approaches, Mech. Research Commun. 23 (1), 11–17.

    Google Scholar 

  • Gao, D.Y. (1996b). Complementarity and duality in natural sciences, in Philosophical Study in Modern Science and Technology (in Chinese), Tsinghua University Press, Beijing, China, pp. 12–25.

    Google Scholar 

  • Gao, D.Y. (1997). Dual extremum principles in finite deformation theory with applications to post-buckling analysis of extended nonlinear beam theory, Appl. Mech. Rev. 50 (11), November 1997, S64–S71.

    Article  Google Scholar 

  • Gao, D.Y. (1998a). Duality, triality and complementary extremum principles in nonconvex parametric variational problems with applications, IMA J. Appl. Math. 61, 199–235.

    Google Scholar 

  • Gao, D.Y. (1998b). Bi-complementarity and duality: A framework in nonlinear equilibria with applications to the contact problems of elastoplastic beam theory, J. Appl. Math. Anal. 221, 672–697.

    Google Scholar 

  • Gao, D.Y. (1999a). Pure complementary energy principle and triality theory in finite elasticity, Mech. Res. Comm. 2 (1), 31–37.

    Google Scholar 

  • Gao, D.Y. (1999b). Duality-mathematics, Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 6, John Wiley, New York, pp. 68–77.

    Google Scholar 

  • Gao, D.Y. (1999c). General analytic solutions and complementary variational principles for large deformation nonsmooth mechanics, Meccanica 34, 169–198.

    Google Scholar 

  • Gao, D.Y. (2000a). Duality Principles in Nonconvex Systems: Theory, Methods and Applications, Kluwer Academic, Dordrecht.

    Google Scholar 

  • Gao, D.Y. (2000b). Analytic solution and triality theory for nonconvex and nonsmooth variational problems with applications, Nonlinear Anal. 42, 7, 1161–1193.

    Google Scholar 

  • Gao, D.Y. (2000c). Canonical dual transformation method and generalized triality theory in nonsmooth global optimization, J. Global Optim. 17 (1/4), 127–160.

    Google Scholar 

  • Gao, D.Y.(2000d). Finite deformation beam models and triality theory in dynamical postbuckling analysis, Int. J. Non-Linear Mechanics 5, 103–131.

    Google Scholar 

  • Gao, D.Y. (2001a). Bi-Duality in Nonconvex Optimization, in Encyclopedia of Optimization, C.A. Floudas and P.D. Pardalos, eds., Kluwer Academic, Dordrecht, vol. 1, pp. 477–482.

    Google Scholar 

  • Gao, D.Y. (2001b). Gao, D.Y., Tri-duality in Global Optimization, in Encyclopedia of Optimization, C.A. Floudas and P.D. Pardalos, eds., Kluwer Academic, Dordrecht, vol. 1, pp. 485–491.

    Google Scholar 

  • Gao, D.Y. (2001c). Complementarity, polarity and triality in non-smooth, non-convex and non-conservative Hamilton systems, Phil. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 359, 2347–2367.

    Google Scholar 

  • Gao, D.Y. (2002). Duality and triality in non-smooth, nonconvex and nonconservative systems: A survey, new phenomena and new results, in Nonsmooth/Nonconvex Mechanics with Applications in Engineering, edited by C. Baniotopoulos, Thessaloniki, Greece, pp. 1–14.

    Google Scholar 

  • Gao, D.Y. (2003a). Perfect duality theory and complete solutions to a class of global optimization problems, Optimisation 52 (4–5), 467–493.

    Google Scholar 

  • Gao, D.Y. (2003b). Nonconvex semi-linear problems and canonical duality solutions, in Advances in Mechanics and Mathematics, vol. II, Kluwer Academic, Dordrecht, pp. 261–312.

    Google Scholar 

  • Gao, D.Y. (2004a). Complementary variational principle, algorithm, and complete solutions to phase transitions in solids governed by Landau-Ginzburg equation, Math. Mech. Solids 9, 285–305.

    Google Scholar 

  • Gao, D.Y. (2004b). Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optim. 29, 377–399.

    Google Scholar 

  • Gao, D.Y.(2005a). Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints, J. Indust. Manage. Optim. 1, 59–69.

    Google Scholar 

  • Gao, D.Y. (2005b). Canonical duality in nonsmooth, concave minimization with inequality constraints, in Advances in Nonsmooth Mechanics, a Special Volume in Honor of Professor J.J. Moreau’s 80th Birthday, P. Alart and O. Maisonneuve, eds., Springer, New York, pp. 305–314.

    Google Scholar 

  • Gao, D.Y. (2006). Complete solutions to a class of polynomial minimization problems, J. Global Optim. 35, 131–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, D.Y. (2007a). Duality-mathematics, Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 6 (second edition), John G. Webster, ed., John Wiley, New York.

    Google Scholar 

  • Gao, D.Y. (2007b). Solutions and optimality to box constrained nonconvex minimization problems, J. Indust. Manage. Optim. 3 (2), 293–304.

    Google Scholar 

  • Gao, D.Y. and Cheung, Y.K. (1989). On the extremum complementary energy principles for nonlinear elastic shells, Int. J. Solids Struct. 26, 683–693.

    MathSciNet  Google Scholar 

  • Gao, D.Y. and Hwang, K.C. (1988). On the complementary variational principles for elastoplasticity, Scientia Sinica (A) 31, 1469–1476.

    MATH  Google Scholar 

  • Gao, D.Y. and Ogden, R.W. (2008a). Closed-form solutions, extremality and nonsmoothness criteria in a large deformation elasticity problem, Zeit. Angew. Math. Phys. 59 (3), 498–517.

    Google Scholar 

  • Gao, D.Y. and Ogden, R.W. (2008b). Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation, to appear in Quarterly J. Mech. Appl. Math.

    Google Scholar 

  • Gao, D.Y., Ogden, R.W., and Stavroulakis, G. (2001). Nonsmooth and Nonconvex Mechanics: Modelling, Analysis and Numerical Methods, Kluwer Academic, Boston.

    Google Scholar 

  • Gao, D.Y. and Onate, E.T. (1990). Rate variational extremum principles for finite elastoplasticity, Appl. Math. Mech. 11 (7), 659–667.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, D.Y. and Ruan, N. (2007). Complete solutions and optimality criteria for nonconvex quadratic-exponential minimization problem, Math. Meth. Oper. Res. 67 (3), 479–491.

    Article  MathSciNet  Google Scholar 

  • Gao, D.Y., Ruan, N., and Sherali, H.D. (2008). Canonical duality theory for solving nonconvex constrained optimization problems, to appear in J. Global Optim.

    Google Scholar 

  • Gao, D.Y. and Strang, G. (1989a). Geometric nonlinearity: Potential energy, complementary energy, and the gap function, Quart. Appl. Math. 47 (3), 487–504.

    Google Scholar 

  • Gao, D.Y. and Strang, G. (1989b). Dual extremum principles in finite deformation elastoplastic analysis, Acta Appl. Math. 17, 257–267.

    Google Scholar 

  • Gao, D.Y. and Wierzbicki, T. (1989). Bounding theorem in finite plasticity with hardening effect, Quart. Appl. Math. 47, 395–403.

    MathSciNet  MATH  Google Scholar 

  • Gao, D.Y. and Yang, W.-H. (1995). Multi-duality in minimal surface type problems, Studies in Appl. Math. 95, 127–146.

    MathSciNet  MATH  Google Scholar 

  • Gasimov, R.N. (2002). Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming, J. Global Optim. 24, 187–203.

    Article  MathSciNet  MATH  Google Scholar 

  • Goh, C.J. and Yang, X.Q. (2002). Duality in Optimization and Variational Inequalities, Taylor and Francis.

    Google Scholar 

  • Greenberg, H.J. (1949). On the variational principles of plasticity, Brown University, ONR, NR-041-032, March.

    Google Scholar 

  • Guo, Z.H. (1980). The unified theory of variational principles in nonlinear elasticity, Archive of Mechanics 32, 577–596.

    MATH  Google Scholar 

  • Haar, A. and von Kármán, Th. (1909). Zur theorie der spannungszustände in plastischen und sandartigen medien, Nachr. Ges. Wiss. Göttingen, 204–218.

    Google Scholar 

  • Han, Weimin (2005). A Posteriori Error Analysis via Duality Theory: With Applications in Modeling and Numerical Approximations, Advances in Mechanics and Mathematics, vol. 8, Springer, New York.

    Google Scholar 

  • Hellinger, E. (1914). Die allgemeine Ansätze der Mechanik der Kontinua, Enzyklopädie der Mathematischen Wissenschaften IV, 4, 602–694.

    Google Scholar 

  • Hill, R. (1978), Aspects of invariance in solids mechanics, Adv. in Appl. Mech. 18, 1–75.

    Article  MATH  Google Scholar 

  • Hiriart-Urruty, J.-B. (1985). Generalized differentialiability, duality and optimization for problems dealing with difference of convex functions, Appl. Math. Optim. 6, 257–269.

    Google Scholar 

  • Horst, R., Pardalos, P.M., and Thoai, N.V. (2000). Introduction to Global Optimization, Kluwer Academic, Boston.

    MATH  Google Scholar 

  • Hu, H.-C. (1955). On some variational principles in the theory of elasticity and the theory of plasticity, Scientia Sinica 4, 33–54.

    MATH  Google Scholar 

  • Huang, X.X. and Yang, X.Q. (2003). A unified augmented Lagrangian approach to duality and exact penalization, Math. Oper. Res. 28, 524–532.

    Article  MathSciNet  Google Scholar 

  • Koiter, W.T. (1973). On the principle of stationary complementary energy in the nonlinear theory of elasticity, SIAM J. Appl. Math. 25, 424–434.

    Article  MathSciNet  MATH  Google Scholar 

  • Koiter, W.T. (1976). On the complementary energy theorem in nonlinear elasticity theory, Trends in Appl. of Pure Math. to Mech., G. Fichera, ed., Pitman.

    Google Scholar 

  • Lao Zhi (400 BC). Dao De Jing (or Tao Te Ching), English edition by D.C. Lau, Penguin Classics, 1963.

    Google Scholar 

  • Lasserre, J. (2001). Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (3), 796–817.

    Google Scholar 

  • Lavery, J. (2004). Shape-preserving approximation of multiscale univariate data by cubic L1 spline fits, Comput. Aided Geom. Design 21, 43–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S.J. and Shield, R.T. (1980a). Variational principles in finite elastostatics, Zeit. Angew. Math. Phys. 31, 437–453.

    Google Scholar 

  • Lee, S.J. and Shield, R.T. (1980b). Applications of variational principles in finite elasticity, Zeit. Angew. Math. Phys. 31, 454–472.

    Google Scholar 

  • Levinson, M. (1965). The complementary energy theorem in finite elasticity, Trans. ASME Ser. E J. Appl. Mech. 87, 826–828.

    MathSciNet  Google Scholar 

  • Li, S.F. and Gupta, A. (2006). On dual configuration forces, J. of Elasticity 84, 13–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Maier, G. (1969). Complementarity plastic work theorems in piecewise-linear elastoplasticity, Int. J. Solids Struct. 5, 261–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Maier, G. (1970). A matrix structural theory of piecewise-linear plasticity with interacting yield planes, Meccanica 5, 55–66.

    Google Scholar 

  • Maier, G., Carvelli, V., and Cocchetti, G. (2000). On direct methods for shakedown and limit analysis, Plenary lecture at the 4th EUROMECH Solid Mechanics Conference,

    Google Scholar 

  • Metz, France, June 26–30, European J. Mech. A Solids 19, Special Issue, S79–S100.

    Google Scholar 

  • Marsden, J. and Ratiu, T. (1995). Introduction to Mechanics and Symmetry, Springer, New York.

    Google Scholar 

  • Moreau, J.J. (1966). Fonctionnelles Convexes, Séminaire sur les équations aux Dérivées Partielles II, Collège de France.

    Google Scholar 

  • Moreau, J.J. (1968). La notion de sur-potentiel et les liaisons unilatérales en élastostatique, C. R. Acad. Sci. Paris Sér. A 267, 954–957.

    MathSciNet  MATH  Google Scholar 

  • Moreau, J.J., Panagiotopoulos, P.D., and Strang, G. (1988). Topics in Nonsmooth Mechanics, Birkhäuser Verlag, Boston.

    MATH  Google Scholar 

  • Murty, K.G. and Kabadi, S.N. (1987). Some NP-complete problems in quadratic and nonlinear programming, Math. Program. 39, 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Nesterov, Y. (2000). Squared functional systems and optimization problems, in High Performance Optimization, H. Frenk et al., eds., Kluwer Academic, Boston, pp. 405–440.

    Google Scholar 

  • Noble, B. and Sewell, M.J. (1972). On dual extremum principles in applied mathematics, IMA J. Appl. Math. 9, 123–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Oden, J.T. and Lee, J.K. (1977). Dual-mixed hybrid finite element method for secondorder elliptic problems, in Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Math., vol. 606, Springer, Berlin, pp. 275–291.

    Google Scholar 

  • Oden, J.T. and Reddy, J.N. (1983). Variational Methods in Theoretical Mechanics, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Ogden, R.W. (1975). A note on variational theorems in non-linear elastostatics, Math. Proc. Camb. Phil. Soc. 77, 609–615.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogden, R.W. (1977). Inequalities associated with the inversion of elastic stress-deformation relations and their implications, Math. Proc. Camb. Phil. Soc. 81, 313–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Pais, A. (1991). Niels Bohr’s Times: In Physics, Philosophy, and Polity, Clarendon Press, Oxford.

    Google Scholar 

  • Pardalos, P.M. (1991). Global optimization algorithms for linearly constrained indefinite quadratic problems, Comput. Math. Appl. 21, 87–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Pardalos, P.M. and Vavasis, S.A. (1991). Quadratic programming with one negative eigenvalue is NP-hard, J. Global Optim. 1, 15–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Parrilo, P. and Sturmfels, B. (2003). Minimizing polynomial functions, in Proceedings of DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, S. Basu and L. González-Vega, eds., American Mathematical Society, pp. 83–100.

    Google Scholar 

  • Penot, J.-P. and Volle, M. (1990). On quasiconvex duality, Math. Oper. Res. 14, 597–625.

    Article  MathSciNet  Google Scholar 

  • Pian, T.H.H. and Tong, P. (1980). Reissner’s principle in finite element formulations, in Mechanics Today, vol. 5, S. Nemat-Nasser, ed., Pergamon Press, Tarrytown, NY, pp. 377–395.

    Google Scholar 

  • Pian, T.H.H. and Wu, C.C. (2006). Hybrid and Incompatible Finite Element Methods, Chapman & Hall/CRC, Boca Raton, FL.

    Google Scholar 

  • Powell, M.J.D. (2002). UOBYQA: Unconstrained optimization by quadratic approximation, Math. Program. 92 (3), 555–582.

    Article  MathSciNet  MATH  Google Scholar 

  • Rall, L.B. (1969). Computational Solution of Nonlinear Operator Equations, Wiley, NewYork.

    MATH  Google Scholar 

  • Reissner, E. (1996). Selected Works in Applied Mechanics and Mathematics, Jones and Bartlett, Boston.

    MATH  Google Scholar 

  • Rockafellar, R.T. (1967). Duality and stability in extremum problems involving convex functions, Pacific J. Math. 21, 167–187.

    MathSciNet  MATH  Google Scholar 

  • Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Rockafellar, R.T. (1974). Conjugate Duality and Optimization, SIAM, Philadelphia.

    Google Scholar 

  • Rockafellar, R.T. and Wets, R.J.B. (1998). Variational Analysis, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Rowlinson, J.S. (1979). Translation of J. D. van der Waals’ “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density,” J. Statist. Phys. 20 (2), 197–244.

    Article  MathSciNet  Google Scholar 

  • Rubinov, A.M. and Yang, X.Q. (2003). Lagrange-Type Functions in Constrained Non-Convex Optimization, Kluwer Academic, Boston.

    MATH  Google Scholar 

  • Rubinov, A.M., Yang X.Q., and Glover, B.M. (2001). Extended Lagrange and penalty functions in optimization, J. Optim. Theory Appl. 111 (2), 381–405.

    Article  MathSciNet  MATH  Google Scholar 

  • Sahni, S. (1974). Computationally related problems, SIAM J. Comput. 3, 262–279.

    Article  MathSciNet  Google Scholar 

  • Sewell, M.J. (1987). Maximum and Minimum Principles, Cambridge Univ. Press.

    Book  MATH  Google Scholar 

  • Sherali, H.D. and Tuncbilek, C. (1992). A global optimization for polynomial programming problem using a reformulation-linearization technique, J. Global Optim. 2, 101–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherali, H.D. and Tuncbilek, C. (1997). New reformulation-linearization technique based relaxation for univariate and multivariate polynominal programming problems, Oper. Res. Lett. 21 (1), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Silverman, H.H. and Tate, J. (1992). Rational Points on Elliptic Curves, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Singer, I. (1998). Duality for optimization and best approximation over finite intersections, Numer. Funct. Anal. Optim. 19 (7–8), 903–915.

    Article  MATH  Google Scholar 

  • Strang, G. (1979). A minimax problem in plasticity theory, in Functional Analysis Methods in Numerical Analysis, M.Z. Nashed, ed., Lecture Notes in Math., 701, Springer, New York, pp. 319–333.

    Google Scholar 

  • Strang, G. (1982). L 1 and L and approximation of vector fields in the plane, in Nonlinear Partial Differential Equations in Applied Science, H. Fujita, P. Lax, and G. Strang, eds., Lecture Notes in Num. Appl. Anal., 5, Springer, New York, pp. 273–288.

    Google Scholar 

  • Strang, G. (1983). Maximal flow through a domain, Math. Program. 26, 123–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Strang, G. (1984). Duality in the classroom, Amer. Math. Monthly 91, 250–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Strang, G. (1986). Introduction to Applied Mathematics, Wellesley-Cambridge Press.

    Google Scholar 

  • Strang, G. and Fix, G. (1973). An Analysis of the Finite Element Method, Prentice-Hall,

    Google Scholar 

  • Englewood Cliffs, N.J. Second edition, Wellesley-Cambridge Press (2008).

    Google Scholar 

  • Tabarrok, B. and Rimrott, F.P.J. (1994). Variational Methods and Complementary Formulations in Dynamics, Kluwer Academic, Dordrecht.

    Google Scholar 

  • Temam, R. and Strang, G. (1980). Duality and relaxation in the variational problems of plasticity, J. de Mécanique 19, 1–35.

    Google Scholar 

  • Thach, P.T. (1993). Global optimality criterion and a duality with a zero gap in nonconvex optimization, SIAM J. Math. Anal. 24 (6), 1537–1556.

    Article  MathSciNet  MATH  Google Scholar 

  • Thach, P.T. (1995). Diewert-Crouzeix conjugation for general quasiconvex duality and applications, J. Optim. Theory Appl. 86 (3), 719–743.

    Article  MathSciNet  MATH  Google Scholar 

  • Thach, P.T., Konno, H., and Yokota, D. (1996). Dual approach to minimization on the set of Pareto-optimal solutions, J. Optim. Theory Appl. 88 (3), 689–707.

    Article  MathSciNet  MATH  Google Scholar 

  • Toland, J.F. (1978). Duality in nonconvex optimization, J. Math. Anal. Appl. 66, 399–415.

    Article  MathSciNet  MATH  Google Scholar 

  • Toland, J.F. (1979). A duality principle for non-convex optimization and the calculus of variations, Arch. Rat. Mech. Anal. 71, 41–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Tonti, E. (1972a). A mathematical model for physical theories, Accad. Naz. dei Lincei, Serie VIII, LII, I, 175–181; II, 350–356.

    Google Scholar 

  • Tonti, E. (1972b). On the mathematical structure of a large class of physical theories, Accad. Naz. dei Lincei, Serie VIII, LII, 49–56.

    Google Scholar 

  • Tuy, H. (1995). D.C. optimization: Theory, methods and algorithms, in Handbook of Global Optimization, R. Horst and P. Pardalos, eds., Kluwer Academic, Boston, pp. 149–216.

    Google Scholar 

  • Vavasis, S. (1990). Quadratic programming is in NP, Info. Proc. Lett. 36, 73–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Vavasis, S. (1991). Nonlinear Optimization: Complexity Issues, Oxford University Press, New York.

    MATH  Google Scholar 

  • Veubeke, B.F. (1972). A new variational principle for finite elastic displacements, Int. J. Eng. Sci. 10, 745–763.

    Article  MATH  Google Scholar 

  • von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik, Springer Verlag, Heidelberg.

    MATH  Google Scholar 

  • Walk, M. (1989). Theory of Duality in Mathematical Programming, Springer-Verlag,Wien.

    MATH  Google Scholar 

  • Washizu, K. (1955). On the variational principles of elasticity and plasticity, Aeroelastic and Structures Research Laboratory, Technical Report 25-18, MIT, Cambridge.

    Google Scholar 

  • Wright, M.H. (1998). The interior-point revolution in constrained optimization, in High-Performance Algorithms and Software in Nonlinear Optimization, R. DeLeone, A. Murli, P.M. Pardalos, and G. Toraldo, eds., Kluwer Academic, Dordrecht, pp. 359– 381.

    Google Scholar 

  • Ye, Y. (1992). A new complexity result on minimization of a quadratic function with a sphere constraint, in Recent Advances in Global Optimization, C. Floudas and P. Pardalos, eds., Princeton University Press, Princeton, NJ, pp. 19–31.

    Google Scholar 

  • Zhao, Y.B., Fang, S.C., and Lavery, J. (2006). Geometric dual formulation of the first derivative based C1-smooth univariate cubic L1 spline functions, to appear in Complementarity, Duality, and Global Optimization, a special issue of J. Global Optim., D.Y. Gao and H.D. Sherali, eds.

    Google Scholar 

  • Zhou, Y.Y. and Yang, X.Q. (2004). Some results about duality and exact penalization, J. Global Optim. 29, 497–509.

    Article  MathSciNet  MATH  Google Scholar 

  • Zubov, L.M. (1970). The stationary principle of complementary work in nonlinear theory of elasticity, Prikl. Mat. Mech. 34, 228–232.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Y. Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, D.Y., Sherali, H.D. (2009). Canonical Duality Theory: Connections between Nonconvex Mechanics and Global Optimization. In: Gao, D., Sherali, H. (eds) Advances in Applied Mathematics and Global Optimization. Advances in Mechanics and Mathematics, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75714-8_8

Download citation

Publish with us

Policies and ethics