Skip to main content

Adaptive Finite Element Solution of Variational Inequalities with Application in Contact Problems

  • Chapter
  • First Online:
Advances in Applied Mathematics and Global Optimization

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 17))

Summary

Summary. In this chapter, we perform a posteriori error analysis for the adaptive finite element solution of several variational inequalities, including elliptic variational inequalities of the second kind and corresponding quasistatic variational inequalities. A general framework for a posteriori error estimation is established by using duality theory in convex analysis.We then derive a posteriori error estimates of residual type and of recovery type, through particular choices of the dual variable present in the general framework. The error estimates are guaranteed to be reliable. Efficiency of the error estimators is theoretically investigated and numerically validated. Detailed derivation and analysis of the error estimates are given for a model elliptic variational inequality. Extensions of the results can be made straightforward in solving other elliptic variational inequalities of the second kind, and we present such an extension for a problem arising in frictional contact. Moreover, we use a quasistatic contact problem as an example to illustrate how to extend the a posteriori error analysis in solving time-dependent variational inequalities. Numerous numerical examples are included to illustrate the effectiveness of the a posteriori error estimates in adaptive solutions of the variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley, New York, 2000.

    MATH  Google Scholar 

  2. M. Ainsworth, J.T. Oden, and C.Y. Lee, Local a posteriori error estimators for variational inequalities, Numer. Meth. PDE 9 (1993), 23–33.

    MathSciNet  MATH  Google Scholar 

  3. J. Alberty, C. Carstensen, and D. Zarrabi, Adaptive numerical analysis in primal elastoplasticity with hardening, Comput. Meth. Appl. Mech. Eng. 171 (1999), 175– 204.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in A.K. Aziz, ed., The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972, pp. 3–359.

    Google Scholar 

  5. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736–754.

    Article  MATH  Google Scholar 

  6. I. Babuška and W.C. Rheinboldt, A posteriori error estimates for the finite element method, Int. J. Numer. Meth. Eng. 12 (1978), 1597–1615.

    Article  MATH  Google Scholar 

  7. I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Oxford University Press, Oxford, 2001.

    Google Scholar 

  8. S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM, Math. Comp. 71 (2002), 971–994.

    MathSciNet  MATH  Google Scholar 

  9. S. Bartels and C. Carstensen, Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Preprint Nr. 2/2001. Publications of the Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany.

    Google Scholar 

  10. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, in A. Iserles, ed., Acta Numerica, Vol. 10, Cambridge University Press, Cambridge, 2001, pp. 1–102.

    Google Scholar 

  11. T. Belytschko, W.K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, Chichester, England, 2000.

    MATH  Google Scholar 

  12. H. Blumand F.-T. Suttmeier, An adaptive finite element discretisation for a simplified Signorini problem, CALCOLO 37 (2000), 65–77.

    Article  MathSciNet  Google Scholar 

  13. H. Blum and F.-T. Suttmeier, Weighted error estimates for finite element solutions of variational inequalities, Computing 65 (2000), 119–134.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Bostan and W. Han, Recovery-based error estimation and adaptive solution of elliptic variational inequalities of the second kind, Commun. Math. Sci. 2 (2004), 1–18.

    MathSciNet  MATH  Google Scholar 

  15. V. Bostan, W. Han, and B.D. Reddy, A posteriori error analysis for elliptic variational inequalities of the second kind, in K.J. Bathe, ed., Computational Fluid and Solid Mechanics 2003, Proceedings of Second MIT Conference on Computational Fluid and Solid Mechanics, June 17–20, Elsevier Science, Oxford, 2003, pp. 1867–1870.

    Google Scholar 

  16. V. Bostan, W. Han, and B.D. Reddy, A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind, Appl. Numer. Math. 52 (2004), 13–38.

    Article  MathSciNet  Google Scholar 

  17. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, third edition, Cambridge University Press, Cambridge, 2007

    Book  MATH  Google Scholar 

  18. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, third edition, Springer-Verlag, New York, 2008.

    Book  MATH  Google Scholar 

  19. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin, 1991.

    Book  MATH  Google Scholar 

  20. C. Carstensen, Numerical analysis of the primal problem of elastoplasticity with hardening, Numer. Math. 82 (1999), 577–597.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Carstensen, Quasi-interpolation and a posteriori analysis in finite element methods, RAIRO Math. Model. Num. 33 (1999), 1187–1202.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Carstensen and J. Alberty, Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening, Comput. Meth. Appl. Mech. Eng. 192 (2003), 1435–1450.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM, Math. Comp.71 (2002), 945–969.

    MathSciNet  MATH  Google Scholar 

  24. C. Carstensen and R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999), 1571–1587.

    Article  MathSciNet  MATH  Google Scholar 

  25. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math. 84 (2000), 527–548.

    Article  MathSciNet  MATH  Google Scholar 

  26. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  27. P.G. Ciarlet, Basic error estimates for elliptic problems, in P.G. Ciarlet and J.-L. Lions, eds., Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, 1991, pp.17–351.

    Google Scholar 

  28. Ph. Cl´ement, Approximation by finite element functions using local regularization, RAIRO Numer. Anal. R-2 (1975), 77–84.

    MathSciNet  Google Scholar 

  29. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  30. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.

    MATH  Google Scholar 

  31. D. French, S. Larsson, and R.H. Nochetto, Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem, Comput. Meth. Appl. Math. 1 (2001), 18–38.

    MathSciNet  MATH  Google Scholar 

  32. M.B. Giles and E. Süli, Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality, in A. Iserles, ed., Acta Numerica, Vol. 11, Cambridge University Press, Cambridge, 2002, pp. 145–236.

    Google Scholar 

  33. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  34. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer- Verlag, New York, 1984.

    MATH  Google Scholar 

  35. R. Glowinski, J.-L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  36. W. Han, Finite element analysis of a holonomic elastic-plastic problem, Numer. Math. 60 (1992), 493–508.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Han, A posteriori error analysis for linearizations of nonlinear elliptic problems and their discretizations, Math. Meth. Appl. Sci. 17 (1994), 487–508.

    Article  MATH  Google Scholar 

  38. W. Han, Quantitative error estimates for idealizations in linear elliptic problems, Math. Meth. Appl. Sci. 17 (1994), 971–987.

    Article  MATH  Google Scholar 

  39. W. Han, A Posteriori Error Analysis via Duality Theory, with Applications in Modeling and Numerical Approximations, Springer Science+Business Media, 2005.

    Google Scholar 

  40. W. Han and S. Jensen, The Kačanov method for a nonlinear variational inequality of the second kind arising in elastoplasticity, Chinese Ann. Math. Ser. B 17 (1996), 129–138.

    MathSciNet  MATH  Google Scholar 

  41. W. Han, S. Jensen, and I. Shimansky, The Kačanov method for some nonlinear problems, Appl. Numer. Math. 24 (1997), 57–79.

    Article  MathSciNet  MATH  Google Scholar 

  42. W. Han and B.D. Reddy, On the finite element method for mixed variational inequalities arising in elastoplasticity, SIAM J. Numer. Anal. 32 (1995), 1778–1807.

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Han and B.D. Reddy, Computational plasticity: The variational basis and numerical analysis, Comput. Mech. Adv. 2 (1995), 283–400.

    MathSciNet  MATH  Google Scholar 

  44. W. Han and B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

  45. W. Han, B.D. Reddy, and G.C. Schroeder, Qualitative and numerical analysis of quasistatic problems in elastoplasticity, SIAM J. Numer. Anal. 34 (1997), 143–177.

    Article  MathSciNet  MATH  Google Scholar 

  46. W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, American Mathematical Society, Providence, RI, International Press, Somerville, MA, 2002.

    Google Scholar 

  47. J. Haslinger, I. Hlaváček, and J. Nečas, Numerical methods for unilateral problems in solid mechanics, in P.G. Ciarlet and J.-L. Lions, eds., Handbook of Numerical Analysis, Vol. IV, North-Holland, Amsterdam, 1996, pp. 313–485.

    Google Scholar 

  48. I. Hlav´aček, J. Haslinger, J. Nečas, and J. Lov´ıšek, Solution of Variational Inequalities in Mechanics, Springer-Verlag, New York, 1988.

    Book  Google Scholar 

  49. R.H.W. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal. 31 (1994), 301–323.

    Article  MathSciNet  MATH  Google Scholar 

  50. T.J.R. Hughes, The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  51. C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  52. C. Johnson, Adaptive finite element methods for the obstacle problem, Math. Models Meth. Appl. Sci. 2 (1992), 483–487.

    Article  MATH  Google Scholar 

  53. N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.

    MATH  Google Scholar 

  54. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.

    MATH  Google Scholar 

  55. R. Kornhuber, A posteriori error estimates for elliptic variational inequalities, Comput. Math. Appl. 31 (1996), 49–60.

    Article  MathSciNet  MATH  Google Scholar 

  56. R.H. Nochetto, K.G. Siebert, and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math. 95 (2003), 163–195.

    Article  MathSciNet  MATH  Google Scholar 

  57. J.T. Oden,Finite elements: An introduction, in P.G. Ciarlet and J.L. Lions, eds., Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, 1991, pp. 3–15.

    Google Scholar 

  58. J.T. Oden and J.N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, John Wiley, New York, 1976.

    MATH  Google Scholar 

  59. P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985.

    Book  MATH  Google Scholar 

  60. S.I. Repin, A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp. 69 (2000), 481–500.

    Article  MathSciNet  MATH  Google Scholar 

  61. S.I. Repin and L.S. Xanthis, A posteriori error estimation for elasto-plastic problems based on duality theory, Comput. Meth. Appl. Mech. Eng. 138 (1996), 317–339.

    Article  MathSciNet  MATH  Google Scholar 

  62. J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in P.G. Ciarlet and J.- L. Lions, eds., Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, 1991, pp. 523–639.

    Google Scholar 

  63. Ch. Schwab, p- and hp-Finite Element Methods, Oxford University Press, 1998.

    Google Scholar 

  64. G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.

    MATH  Google Scholar 

  65. F.-T. Suttmeier, General approach for a posteriori error estimates for finite element solutions of variational inequalities, Comput. Mech. 27 (2001),317–323.

    Article  MathSciNet  MATH  Google Scholar 

  66. B. Szab´o and I. Babuška, Finite Element Analysis, John Wiley, New York, 1991.

    Google Scholar 

  67. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics, No. 1054, Springer-Verlag, New York, 1984.

    Google Scholar 

  68. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, second edition, Springer, New York, 2006.

    MATH  Google Scholar 

  69. A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal. 39 (2001), 146–167.

    Article  MathSciNet  MATH  Google Scholar 

  70. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley and Teubner, New York, 1996.

    MATH  Google Scholar 

  71. N. Yan, A posteriori error estimators of gradient recovery type for elliptic obstacle problems, Adv. Comput. Math. 15 (2001), 333–362.

    Article  MATH  Google Scholar 

  72. N. Yan and A. Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Meth. Appl. Mech. Eng. 190 (2001), 4289–4299.

    Article  MathSciNet  MATH  Google Scholar 

  73. E. Zeidler, Nonlinear Functional Analysis and Its Applications, III: Variational Methods and Optimization, Springer-Verlag, New York, 1986.

    Google Scholar 

  74. Z. Zhang, A posteriori error estimates on irregular grids based on gradient recovery, Adv. Comput. Math. 15 (2001), 363–374.

    Article  MathSciNet  MATH  Google Scholar 

  75. O.C. Zienkiewicz, Origins, milestones and directions of the finite element method–A personal view, in P.G. Ciarlet and J.-L. Lions, eds., Handbook of Numerical Analysis, Vol. IV, North-Holland, Amsterdam, 1996, pp. 3–67.

    Google Scholar 

  76. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Vol. 1 (Basic Formulation and Linear Problems), McGraw-Hill, New York, 1989.

    Google Scholar 

  77. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Vol. 2 (Solid and Fluid Mechanics, Dynamics and Nonlinearity), McGraw-Hill, New York, 1991.

    Google Scholar 

  78. O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Eng. 24 (1987), 337–357.

    Article  MathSciNet  MATH  Google Scholar 

  79. O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. J. Numer. Meth. Eng. 33 (1992), 1331–1364.

    Article  MathSciNet  MATH  Google Scholar 

  80. O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, Int. J. Numer. Meth. Eng. 33 (1992), 1365–1382.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Bostan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bostan, V., Han, W. (2009). Adaptive Finite Element Solution of Variational Inequalities with Application in Contact Problems. In: Gao, D., Sherali, H. (eds) Advances in Applied Mathematics and Global Optimization. Advances in Mechanics and Mathematics, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75714-8_3

Download citation

Publish with us

Policies and ethics