Skip to main content

Maximum Flows and Minimum Cuts in the Plane

  • Chapter
  • First Online:
Advances in Applied Mathematics and Global Optimization

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 17))

Summary

A continuous maximum flow problem finds the largest t such that div v = t F (x, y) is possible with a capacity constraint ||(v 1 v 2)|| ≤ c(x, y). The dual problem finds a minimum cut ∂ S which is filled to capacity by the flow through it. This model problem has found increasing application in medical imaging, and the theory continues to develop (along with new algorithms). Remaining difficulties include explicit streamlines for the maximum flow, and constraints that are analogous to a directed graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 86–96.

    Google Scholar 

  2. B. Appleton and H. Talbot, Globally minimal surfaces by continuous maximal flows, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 106–118.

    Article  Google Scholar 

  3. Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE Trans. Pattern Anal.Mach. Intell. 26 (2004) 1124–1137.

    Article  Google Scholar 

  4. Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell. 23 (2001) 1222–1239.

    Article  Google Scholar 

  5. H. Busemann, The isoperimetric problem in the Minkowski plane, Amer. J.Math. 69 (1947) 863–871.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. D. Chavez and L. H. Harper, Duality theorems for a continuous analog of Ford-Fulkerson flows in networks, Adv. Appl. Math. 14 (1993) 369–388.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, 1970, 195–199.

    Google Scholar 

  8. F. R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, 1997.

    Google Scholar 

  9. F. R. K. Chung, Laplacians and the Cheeger inequality for directed graphs, Ann. Combinatorics 9 (2005) 1–19.

    Article  MATH  Google Scholar 

  10. P. Diaconis and D. W. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab. 1 (1991) 36–61.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. C. Evans, Survey of applications of PDE methods to Monge-Kantorovich mass transfer problems, www.math.berkeley.edu/~evans (earlier version: Current Developments in Mathematics, 1997).

  12. W. Fleming and R. Rishel, An integral formula for total gradient variation, Archiv der Mathematik 11 (1960) 218–222.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. R. Ford Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962.

    Google Scholar 

  14. L. R. Ford Jr. and D. R. Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (1956) 399–404.

    MathSciNet  MATH  Google Scholar 

  15. W. Gangbo and R. McCann, Optimal maps in Monge’s mass transport problem, C.R. Acad. Sci. Paris. Ser. I. Math. 325 (1995) 1653–1658.

    MathSciNet  Google Scholar 

  16. D. Grieser, The first eigenvalue of the Laplacian, isoperimetric constants, and the max flow min cut theorem, Archiv der Mathematik 87 (2006) 75–85.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, 1969.

    Google Scholar 

  18. M. Iri, Theory of flows in continua as approximation to flows in networks, Survey of Mathematical Programming 2 (1979) 263–278.

    MathSciNet  Google Scholar 

  19. R. Kohn and R. Temam, Dual spaces of stresses and strains, Appl. Math. and Opt. 10 (1983) 1—35.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Lippert, Discrete approximations to continuum optimal flow problems, Stud. Appl. Math. 117 (2006) 321—333.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. S. Mitchell, On maximum flows in polyhedral domains, Proc. Fourth Ann. Symp. Computational Geometry, 341–351, 1988.

    Google Scholar 

  22. R. Nozawa, Examples of max-flow and min-cut problems with duality gaps in continuous networks, Math. Program. 63 (1994) 213–234.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Nozawa, Max-flow min-cut theorem in an anisotropic network, Osaka J. Math. 27 (1990) 805–842.

    MathSciNet  MATH  Google Scholar 

  24. M. L. Overton, Numerical solution of a model problem from collapse load analysis, Computing Methods in Applied Science and Engineering VI, R. Glowinski and J. L. Lions, eds., Elsevier, 1984.

    Google Scholar 

  25. S. T. Rachev and L. Rüschendorf, Mass Transportation Problems I, II, Springer (1998).

    Google Scholar 

  26. S. Roy and I. J. Cox, A maximum-flow formulation of the n-camera stereo correspondence problem, Proc. Int. Conf. Computer Vision (1988) 492–499.

    Google Scholar 

  27. F. Santosa, An inverse problem in photolithography, in preparation.

    Google Scholar 

  28. R. Sedgewick, Algorithms in C, Addison-Wesley, 2002.

    Google Scholar 

  29. G. Strang, A minimax problem in plasticity theory, Functional Analysis Methods in Numerical Analysis, Z. Nashed, ed., Lecture Notes in Mathematics 701, Springer, 1979.

    Google Scholar 

  30. G. Strang, L 1 and L approximation of vector fields in the plane, Lecture Notes in Num. Appl. Anal. 5 (1982) 273–288.

    Google Scholar 

  31. G. Strang, Maximal flow through a domain, Math. Program. 26 (1983) 123–143.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Strang, Maximum area with Minkowski measures of perimeter, Proc. Royal Society of Edinburgh 138 (2008) 189–199.

    MathSciNet  MATH  Google Scholar 

  33. C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, American Mathematical Society, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Strang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Strang, G. (2009). Maximum Flows and Minimum Cuts in the Plane. In: Gao, D., Sherali, H. (eds) Advances in Applied Mathematics and Global Optimization. Advances in Mechanics and Mathematics, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75714-8_1

Download citation

Publish with us

Policies and ethics