Skip to main content

Abstract

Macrolides and ketolides are characterized by a very wide tissular distribution, which is related to their capacity to accumulate in the acidic compartments of the cells. This property is considered an advantage, because it concentrates the drug at the site of infection. Yet, the low serum levels consecutive to this tissular distribution may favor the selection of resistance. Macrolides are essentially bacteriostatic and ketolides are slowly bactericidal. The pharmacodynamic indice that best predicts efficacy is the free 24 h-AUC/MIC ratio for both subclasses. Despite their high concentration inside the cells, macrolides and ketolides remain bacteriostatic against intracellular bacteria, with a potency similar to that observed extracellularly. New formulations have been developed to optimize patient’s adherence (extended release tablets) or to further increase antibiotic concentration at the site of infection (powders for inhalation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alferova IV, Vostrov SN, Portnoy YA et al (2005) Comparative pharmacodynamics of telithromycin and clarithromycin with Streptococcus pneumoniae and Staphylococcus aureus in an in vitro dynamic model: focus on clinically achievable antibiotic concentrations. Int J Antimicrob Agents 26:197–204

    CAS  PubMed  Google Scholar 

  • Ambrose PG, Bhavnani SM, Rubino CM et al (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86

    CAS  PubMed  Google Scholar 

  • Amsden GW (2001) Advanced-generation macrolides: tissue-directed antibiotics. Int J Antimicrob Agents 18(Suppl 1):S11–S15

    CAS  PubMed  Google Scholar 

  • Amsden GW, Nafziger AN, Foulds G (1999) Pharmacokinetics in serum and leukocyte exposures of oral azithromycin, 1,500 milligrams, given over a 3- or 5-day period in healthy subjects. Antimicrob Agents Chemother 43:163–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andes DR, Okusanya OO, Forrest A et al (2010) Pharmacokinetic-pharmacodynamic (PK-PD) analysis of Solithromycin against Streptococcus pneumoniae using data from a murine-lung infection model. In: 50th Interscience conference on antimicrobial agents and chemotherapy (ICAAC), Boston, MA A1-688

    Google Scholar 

  • Bahal N, Nahata MC (1992) The new macrolide antibiotics: azithromycin, clarithromycin, dirithromycin, and roxithromycin. Ann Pharmacother 26:46–55

    CAS  PubMed  Google Scholar 

  • Barcia-Macay M, Seral C, Mingeot-Leclercq MP et al (2006) Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother 50:841–851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackman HJ, Yoneda C, Dawson CR et al (1977) Antibiotic susceptibility of Chlamydia trachomatis. Antimicrob Agents Chemother 12:673–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blais J, Beauchamp D, Chamberland S (1994) Azithromycin uptake and intracellular accumulation by Toxoplasma gondii-infected macrophages. J Antimicrob Chemother 34:371–382

    CAS  PubMed  Google Scholar 

  • Bosnar M, Kelneric Z, Munic V et al (2005) Cellular uptake and efflux of azithromycin, erythromycin, clarithromycin, telithromycin, and cethromycin. Antimicrob Agents Chemother 49:2372–2377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boswell FJ, Andrews JM, Wise R (1998) Pharmacodynamic properties of HMR 3647, a novel ketolide, on respiratory pathogens, enterococci and Bacteroides fragilis demonstrated by studies of time-kill kinetics and postantibiotic effect. J Antimicrob Chemother 41:149–153

    CAS  PubMed  Google Scholar 

  • Bright GM, Nagel AA, Bordner J et al (1988) Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides. J Antibiot (Tokyo) 41:1029–1047

    CAS  Google Scholar 

  • Brogden RN, Peters DH (1994) Dirithromycin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 48:599–616

    CAS  PubMed  Google Scholar 

  • Bryskier A (2000) Ketolides-telithromycin, an example of a new class of antibacterial agents. Clin Microbiol Infect 6:661–669

    CAS  PubMed  Google Scholar 

  • Carbon C (1998) Pharmacodynamics of macrolides, azalides, and streptogramins: effect on extracellular pathogens. Clin Infect Dis 27:28–32

    CAS  PubMed  Google Scholar 

  • Carlier MB, Zenebergh A, Tulkens PM (1987) Cellular uptake and subcellular distribution of roxithromycin and erythromycin in phagocytic cells. J Antimicrob Chemother 20(Suppl B):47–56

    CAS  PubMed  Google Scholar 

  • Carlier MB, Garcia-Luque I, Montenez JP et al (1994) Accumulation, release and subcellular localization of azithromycin in phagocytic and non-phagocytic cells in culture. Int J Tissue React 16:211–220

    CAS  PubMed  Google Scholar 

  • Carryn S, Van Bambeke F, Mingeot-Leclercq MP et al (2002) Comparative intracellular (THP-1 macrophage) and extracellular activities of beta-lactams, azithromycin, gentamicin, and fluoroquinolones against Listeria monocytogenes at clinically relevant concentrations. Antimicrob Agents Chemother 46:2095–2103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carryn S, Chanteux H, Seral C et al (2003) Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am 17:615–634

    PubMed  Google Scholar 

  • Chantot JF, Bryskier A, Gasc JC (1986) Antibacterial activity of roxithromycin: a laboratory evaluation. J Antibiot (Tokyo) 39:660–668

    CAS  Google Scholar 

  • Conte JE Jr, Golden JA, Kipps J et al (2004) Steady-state plasma and intrapulmonary pharmacokinetics and pharmacodynamics of cethromycin. Antimicrob Agents Chemother 48:3508–3515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10

    CAS  PubMed  Google Scholar 

  • Craig WA, Kiem S, Andes DR (2002) Free drug 24-Hr AUC/MIC is the PK/PD target that correlates with in vivo efficacy of macrolides, azalides, ketolides and clindamycin. In: 42d Interscience conference on antimicrobial agents and chemotherapy, San Diego, CA A-1264

    Google Scholar 

  • de Duve C, de Barsy T, Poole B et al (1974) Commentary. Lysosomotropic agents. Biochem Pharmacol 23:2495–2531

    PubMed  Google Scholar 

  • Denis A, Agouridas C, Auger JM et al (1999) Synthesis and antibacterial activity of HMR 3647 a new ketolide highly potent against erythromycin-resistant and susceptible pathogens. Bioorg Med Chem Lett 9:3075–3080

    CAS  PubMed  Google Scholar 

  • Di Paolo A, Barbara C, Chella A et al (2002) Pharmacokinetics of azithromycin in lung tissue, bronchial washing, and plasma in patients given multiple oral doses of 500 and 1000 mg daily. Pharmacol Res 46:545–550

    PubMed  Google Scholar 

  • Djokic S, Kobrehel G, Lazarevski G (1987) Erythromycin series. XII. Antibacterial in vitro evaluation of 10-dihydro-10-deoxo-11-azaerythromycin A: synthesis and structure-activity relationship of its acyl derivatives. J Antibiot (Tokyo) 40:1006–1015

    CAS  Google Scholar 

  • Dornbusch K, Olofsson C, Holm S (1999) Postantibiotic effect and postantibiotic sub-mic effect of dirithromycin and erythromycin against respiratory tract pathogenic bacteria. APMIS 107:505–513

    CAS  PubMed  Google Scholar 

  • Douthwaite S (2001) Structure-activity relationships of ketolides vs. macrolides. Clin Microbiol Infect 7(Suppl 3):11–17

    CAS  PubMed  Google Scholar 

  • Douthwaite S, Champney WS (2001) Structures of ketolides and macrolides determine their mode of interaction with the ribosomal target site. J Antimicrob Chemother 48(Suppl T1):1–8

    CAS  PubMed  Google Scholar 

  • Drago L, De Vecchi E, Nicola L et al (2005) Kinetic bactericidal activity of telithromycin, azithromycin and clarithromycin against respiratory pathogens. APMIS 113:655–663

    CAS  PubMed  Google Scholar 

  • Ehnhage A, Rautiainen M, Fang AF et al (2008) Pharmacokinetics of azithromycin in serum and sinus fluid after administration of extended-release and immediate-release formulations in patients with acute bacterial sinusitis. Int J Antimicrob Agents 31:561–566

    CAS  PubMed  Google Scholar 

  • Fang AF, Palmer JN, Chiu AG et al (2009) Pharmacokinetics of azithromycin in plasma and sinus mucosal tissue following administration of extended-release or immediate-release formulations in adult patients with chronic rhinosinusitis. Int J Antimicrob Agents 34:67–71

    CAS  PubMed  Google Scholar 

  • Fernandes PB, Bailer R, Swanson R et al (1986) In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother 30:865–873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Firsov AA, Zinner SH, Vostrov SN et al (2002) Comparative pharmacodynamics of azithromycin and roxithromycin with S. pyogenes and S. pneumoniae in a model that simulates in vitro pharmacokinetics in human tonsils. J Antimicrob Chemother 49:113–119

    CAS  PubMed  Google Scholar 

  • Foulds G, Shepard RM, Johnson RB (1990) The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother 25(Suppl A):73–82

    CAS  PubMed  Google Scholar 

  • Foulds G, Chan KH, Johnson JT et al (1991) Concentrations of azithromycin in human tonsillar tissue. Eur J Clin Microbiol Infect Dis 10:853–856

    CAS  PubMed  Google Scholar 

  • Fraschini F, Scaglione F, Demartini G (1993) Clarithromycin clinical pharmacokinetics. Clin Pharmacokinet 25:189–204

    CAS  PubMed  Google Scholar 

  • Freeman CD, Nightingale CH, Nicolau DP et al (1994) Intracellular and extracellular penetration of azithromycin into inflammatory and noninflammatory blister fluid. Antimicrob Agents Chemother 38:2449–2451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furneri PM, Nicoletti G (1991) Macrolides: present and future. An appraisal of in-vitro activity and pharmacokinetic behavior. J Chemother 3(Suppl 1):24–27

    PubMed  Google Scholar 

  • Furuie H, Saisho Y, Yoshikawa T et al (2010) Intrapulmonary pharmacokinetics of S-013420, a novel bicyclolide antibacterial, in healthy Japanese subjects. Antimicrob Agents Chemother 54:866–870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia I, Pascual A, Ballesta S et al (2003) Accumulation and activity of cethromycin (ABT-773) within human polymorphonuclear leucocytes. J Antimicrob Chemother 52:24–28

    CAS  PubMed  Google Scholar 

  • Gattringer R, Urbauer E, Traunmuller F et al (2004) Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers. Antimicrob Agents Chemother 48:4650–4653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gehanno P, Sultan E, Passot V et al (2003) Telithromycin (HMR 3647) achieves high and sustained concentrations in tonsils of patients undergoing tonsillectomy. Int J Antimicrob Agents 21:441–445

    CAS  PubMed  Google Scholar 

  • Girard AE, Girard D, Retsema JA (1990) Correlation of the extravascular pharmacokinetics of azithromycin with in-vivo efficacy in models of localized infection. J Antimicrob Chemother 25(Suppl A):61–71

    CAS  PubMed  Google Scholar 

  • Gladue RP, Bright GM, Isaacson RE et al (1989) In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother 33:277–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gotfried MH, Danziger LH, Rodvold KA (2003) Steady-state plasma and bronchopulmonary characteristics of clarithromycin extended-release tablets in normal healthy adult subjects. J Antimicrob Chemother 52:450–456

    CAS  PubMed  Google Scholar 

  • Guay DR, Gustavson LE, Devcich KJ et al (2001) Pharmacokinetics and tolerability of extended-release clarithromycin. Clin Ther 23:566–577

    CAS  PubMed  Google Scholar 

  • Hand WL, Hand DL (2001) Characteristics and mechanisms of azithromycin accumulation and efflux in human polymorphonuclear leukocytes. Int J Antimicrob Agents 18:419–425

    CAS  PubMed  Google Scholar 

  • Hoffman HL, Klepser ME, Ernst EJ et al (2003) Influence of macrolide susceptibility on efficacies of clarithromycin and azithromycin against Streptococcus pneumoniae in a murine lung infection model. Antimicrob Agents Chemother 47:739–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Homma T, Hori T, Ohshiro M et al (2010) In vitro pharmacokinetic and pharmacodynamic evaluation of S-013420 against Haemophilus influenzae and Streptococcus pneumoniae. Antimicrob Agents Chemother 54:4300–4305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horwitz MA, Silverstein SC (1983) Intracellular multiplication of Legionnaires’ disease bacteria (Legionella pneumophila) in human monocytes is reversibly inhibited by erythromycin and rifampin. J Clin Invest 71:15–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang CK, Duffield J, Chiu YH et al (2008) SAR of 11, 12-carbamate macrolides/ketolides linked with 1,4-substituted-[1,2,3]-triazoles. In: 48th Interscience conference on antimicrobial agents and chemotherapy (ICAAC) & 46th annual meeting of the infectious diseases society of America (IDSA), Washington, DC F1-3973

    Google Scholar 

  • Jiang LJ, Wang M, Or YS (2009) Pharmacokinetics of EDP-420 after ascending single oral doses in healthy adult volunteers. Antimicrob Agents Chemother 53:1786–1792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadota J, Ishimatsu Y, Iwashita T et al (2002) Intrapulmonary pharmacokinetics of telithromycin, a new ketolide, in healthy Japanese volunteers. Antimicrob Agents Chemother 46:917–921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanazawa Y, Kuramata T (1976) Evaluation of midecamycin sensitivity disc (author’s transl). Jpn J Antibiot 29:178–183

    CAS  PubMed  Google Scholar 

  • Kawaharajo K, Sekizawa Y, Inoue M (1981) In vitro and in vivo antibacterial activity of 9,3"-Di-o-acetyl midecamycin (Mom), a new macrolide antibiotic. J Antibiot (Tokyo) 34:436–442

    CAS  Google Scholar 

  • Kays MB, Lisek CR, Denys GA (2007) Comparative in vitro and bactericidal activities of telithromycin against penicillin-nonsusceptible, levofloxacin-resistant, and macrolide-resistant Streptococcus pneumoniae by time-kill methodology. Int J Antimicrob Agents 29:289–294

    CAS  PubMed  Google Scholar 

  • Kearney BP, Aweeka FT (1999) The penetration of anti-infectives into the central nervous system. Neurol Clin 17:883–900

    CAS  PubMed  Google Scholar 

  • Kellow WF, Lepper MH, Plauts S et al (1955) Spiramycin in the treatment of infection. Antibiot Annu 3:658–666

    PubMed  Google Scholar 

  • Khair OA, Andrews JM, Honeybourne D et al (2001) Lung concentrations of telithromycin after oral dosing. J Antimicrob Chemother 47:837–840

    CAS  PubMed  Google Scholar 

  • Kikuchi E, Yamazaki K, Kikuchi J et al (2008) Pharmacokinetics of clarithromycin in bronchial epithelial lining fluid. Respirology 13:221–226

    PubMed  Google Scholar 

  • Kim MK, Zhou W, Tessier PR et al (2002) Bactericidal effect and pharmacodynamics of cethromycin (ABT-773) in a murine pneumococcal pneumonia model. Antimicrob Agents Chemother 46:3185–3192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirst HA, Sides GD (1989) New directions for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother 33:1413–1418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuehnel TS, Schurr C, Lotter K et al (2005) Penetration of telithromycin into the nasal mucosa and ethmoid bone of patients undergoing rhinosurgery for chronic sinusitis. J Antimicrob Chemother 55:591–594

    CAS  PubMed  Google Scholar 

  • Labro MT, Abdelghaffar H, Babin-Chevaye C (2004) Interaction of the new ketolide ABT-773 (cethromycin) with human polymorphonuclear neutrophils and the phagocytic cell line PLB-985 in vitro. Antimicrob Agents Chemother 48:1096–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence LE (2001) ABT-773 (Abbott laboratories). Curr Opin Investig Drugs 2:766–772

    CAS  PubMed  Google Scholar 

  • Lemaire S, Van Bambeke F, Tulkens PM (2009) Cellular accumulation and pharmacodynamic evaluation of the intracellular activity of CEM-101, a novel fluoroketolide, against Staphylococcus aureus, Listeria monocytogenes, and Legionella pneumophila in human THP-1 macrophages. Antimicrob Agents Chemother 53:3734–3743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lippert C, Gbenado S, Qiu C et al (2005) The bioequivalence of telithromycin administered orally as crushed tablets versus tablets swallowed whole. J Clin Pharmacol 45:1025–1031

    CAS  PubMed  Google Scholar 

  • Liu P, Allaudeen H, Chandra R et al (2007) Comparative pharmacokinetics of azithromycin in serum and white blood cells of healthy subjects receiving a single-dose extended-release regimen versus a 3-day immediate-release regimen. Antimicrob Agents Chemother 51:103–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lodise TP, Preston S, Bhargava V et al (2005) Pharmacodynamics of an 800-mg dose of telithromycin in patients with community-acquired pneumonia caused by extracellular pathogens. Diagn Microbiol Infect Dis 52:45–52

    CAS  PubMed  Google Scholar 

  • Lucchi M, Damle B, Fang A et al (2008) Pharmacokinetics of azithromycin in serum, bronchial washings, alveolar macrophages and lung tissue following a single oral dose of extended or immediate release formulations of azithromycin. J Antimicrob Chemother 61:884–891

    CAS  PubMed  Google Scholar 

  • Mandell GL, Coleman E (2001) Uptake, transport, and delivery of antimicrobial agents by human polymorphonuclear neutrophils. Antimicrob Agents Chemother 45:1794–1798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massey EH, Kitchell B, Martin LD et al (1970) Erythromycylamine. Tetrahedron Lett 2:157–160

    PubMed  Google Scholar 

  • Massey EH, Kitchell BS, Martin LD et al (1974) Antibacterial activity of 9(S)-erythromycylamine-aldehyde condensation products. J Med Chem 17:105–107

    CAS  PubMed  Google Scholar 

  • McDonald PJ, Pruul H (1991) Phagocyte uptake and transport of azithromycin. Eur J Clin Microbiol Infect Dis 10:828–833

    CAS  PubMed  Google Scholar 

  • McGuire JM, Bunch RL, Anderson RC et al (1952) Ilotycin, a new antibiotic. Antibiot Chemother 2:281–283

    CAS  Google Scholar 

  • Mikamo H, Ninomiya M, Tamaya T (2003) Penetration of oral telithromycin into female genital tissues. J Infect Chemother 9:358–360

    CAS  PubMed  Google Scholar 

  • Montenez JP, Van Bambeke F, Piret J et al (1999) Interactions of macrolide antibiotics (Erythromycin A, roxithromycin, erythromycylamine [Dirithromycin], and azithromycin) with phospholipids: computer-aided conformational analysis and studies on acellular and cell culture models. Toxicol Appl Pharmacol 156:129–140

    CAS  PubMed  Google Scholar 

  • Mor N, Vanderkolk J, Heifets L (1994) Accumulation of clarithromycin in macrophages infected with Mycobacterium avium. Pharmacotherapy 14:100–104

    CAS  PubMed  Google Scholar 

  • Morimoto S, Takahashi Y, Watanabe Y et al (1984) Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J Antibiot (Tokyo) 37:187–189

    CAS  Google Scholar 

  • Muller-Serieys C, Soler P, Cantalloube C et al (2001) Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647). Antimicrob Agents Chemother 45:3104–3108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munic V, Kelneric Z, Mikac L et al (2010) Differences in assessment of macrolide interaction with human MDR1 (ABCB1, P-gp) using rhodamine-123 efflux, ATPase activity and cellular accumulation assays. Eur J Pharm Sci 41:86–95

    CAS  PubMed  Google Scholar 

  • Muto C, Liu P, Chiba K et al (2011) Pharmacokinetic-pharmacodynamic analysis of azithromycin extended release in Japanese patients with common respiratory tract infectious disease. J Antimicrob Chemother 66:165–174

    CAS  PubMed  Google Scholar 

  • Namour F, Wessels DH, Pascual MH et al (2001) Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses. Antimicrob Agents Chemother 45:170–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Namour F, Sultan E, Pascual MH et al (2002) Penetration of telithromycin (HMR 3647), a new ketolide antimicrobial, into inflammatory blister fluid following oral administration. J Antimicrob Chemother 49:1035–1038

    CAS  PubMed  Google Scholar 

  • Neuhauser MM, Prause JL, Danziger LH et al (2003) In vitro bactericidal activities of ABT-773 against ermB strains of Streptococcus pneumoniae. Antimicrob Agents Chemother 47:1132–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nitta K, Yano K, Miyamoto F et al (1967) A new antibiotic, josamycin. II. Biological studies. J Antibiot (Tokyo) 20:181–187

    CAS  Google Scholar 

  • Noreddin AM, Roberts D, Nichol K et al (2002) Pharmacodynamic modeling of clarithromycin against macrolide-resistant [PCR-positive mef(A) or erm(B)] Streptococcus pneumoniae simulating clinically achievable serum and epithelial lining fluid free-drug concentrations. Antimicrob Agents Chemother 46:4029–4034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noreddin AM, El Khatib WF, Aolie J et al (2009) Pharmacodynamic target attainment potential of azithromycin, clarithromycin, and telithromycin in serum and epithelial lining fluid of community-acquired pneumonia patients with penicillin-susceptible, intermediate, and resistant Streptococcus pneumoniae. Int J Infect Dis 13:483–487

    CAS  PubMed  Google Scholar 

  • Odenholt I, Lowdin E, Cars O (2001) Pharmacodynamics of telithromycin in vitro against respiratory tract pathogens. Antimicrob Agents Chemother 45:23–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odenholt-Tornqvist I, Lowdin E, Cars O (1995) Postantibiotic effects and postantibiotic sub-MIC effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens. Antimicrob Agents Chemother 39:221–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okusanya OO, Bhavnani SM, Forrest A et al (2010) Pharmacokinetic-pharmacodynamic target attainment analysis supporting Solithromycin (CEM-101) Phase 2 dose selection. In: 50th Interscience conference on antimicrobial agents and chemotherapy (ICAAC), Boston, MA A1-692

    Google Scholar 

  • Omoto S, Iwamatsu K, Inouye S et al (1976) Modifications of a macrolide antibiotic midecamycin (SF-837). I. Synthesis and structure of 9,3''-diacetylmidecamycin. J Antibiot (Tokyo) 29:536–548

    CAS  Google Scholar 

  • Or YS, Clark RF, Wang S et al (2000) Design, synthesis, and antimicrobial activity of 6-O-substituted ketolides active against resistant respiratory tract pathogens. J Med Chem 43:1045–1049

    CAS  PubMed  Google Scholar 

  • Pachot JI, Botham RP, Haegele KD et al (2003) Experimental estimation of the role of P-Glycoprotein in the pharmacokinetic behaviour of telithromycin, a novel ketolide, in comparison with roxithromycin and other macrolides using the Caco-2 cell model. J Pharm Pharm Sci 6:1–12

    CAS  PubMed  Google Scholar 

  • Pai MP, Momary KM, Rodvold KA (2006) Antibiotic drug interactions. Med Clin North Am 90:1223–1255

    CAS  PubMed  Google Scholar 

  • Pascual A, Rodriguez-Bano J, Ballesta S et al (1997) Azithromycin uptake by tissue cultured epithelial cells. J Antimicrob Chemother 39:293–295

    CAS  PubMed  Google Scholar 

  • Pascual A, Ballesta S, Garcia I et al (2001) Uptake and intracellular activity of ketolide HMR 3647 in human phagocytic and non-phagocytic cells. Clin Microbiol Infect 7:65–69

    CAS  PubMed  Google Scholar 

  • Peters DH, Clissold SP (1992) Clarithromycin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential. Drugs 44:117–164

    CAS  PubMed  Google Scholar 

  • Pletz MW, Preechachatchaval V, Bulitta J et al (2003) ABT-773: pharmacokinetics and interactions with ranitidine and sucralfate. Antimicrob Agents Chemother 47:1129–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puri SK, Lassman HB (1987) Roxithromycin: a pharmacokinetic review of a macrolide. J Antimicrob Chemother 20(Suppl B):89–100

    CAS  PubMed  Google Scholar 

  • Rodvold KA, Gotfried MH, Danziger LH et al (1997) Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers. Antimicrob Agents Chemother 41:1399–1402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodvold KA, Gotfried MH, Still JG et al (2012) Comparison of plasma, epithelial lining fluid, and alveolar macrophage concentrations of solithromycin (CEM-101) in healthy adult subjects. Antimicrob Agents Chemother 56(10):5076–5081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakakibara H, Okekawa O, Fujiwara T et al (1981) Acyl derivatives of 16-membered macrolides. I. Synthesis and biological properties of 3"-O-propionylleucomycin A5 (TMS-19-Q). J Antibiot (Tokyo) 34:1001–1010

    CAS  Google Scholar 

  • Sandberg A, Hessler JH, Skov RL et al (2009) Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model. Antimicrob Agents Chemother 53:1874–1883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schentag JJ, Ballow CH (1991) Tissue-directed pharmacokinetics. Am J Med 91:5S–11S

    CAS  PubMed  Google Scholar 

  • Seral C, Carryn S, Tulkens PM et al (2003a) Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus. J Antimicrob Chemother 51:1167–1173

    CAS  PubMed  Google Scholar 

  • Seral C, Michot JM, Chanteux H et al (2003b) Influence of P-glycoprotein inhibitors on accumulation of macrolides in J774 murine macrophages. Antimicrob Agents Chemother 47:1047–1051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shakeri-Nejad K, Stahlmann R (2006) Drug interactions during therapy with three major groups of antimicrobial agents. Expert Opin Pharmacother 7:639–651

    CAS  PubMed  Google Scholar 

  • Shi J, Montay G, Bhargava VO (2005) Clinical pharmacokinetics of telithromycin, the first ketolide antibacterial. Clin Pharmacokinet 44:915–934

    CAS  PubMed  Google Scholar 

  • Shinkai M, Henke MO, Rubin BK (2008) Macrolide antibiotics as immunomodulatory medications: proposed mechanisms of action. Pharmacol Ther 117:393–405

    CAS  PubMed  Google Scholar 

  • Still JG, Schranz J, Degenhardt TP et al (2011) Pharmacokinetics of solithromycin (CEM-101) after single or multiple oral doses and effects of food on single-dose bioavailability in healthy adult subjects. Antimicrob Agents Chemother 55:1997–2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swainston HT, Keam SJ (2007) Azithromycin extended release: a review of its use in the treatment of acute bacterial sinusitis and community-acquired pneumonia in the US. Drugs 67:773–792

    Google Scholar 

  • Tessier PR, Kim MK, Zhou W et al (2002) Pharmacodynamic assessment of clarithromycin in a murine model of pneumococcal pneumonia. Antimicrob Agents Chemother 46:1425–1434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tessier PR, Mattoes HM, Dandekar PK et al (2005) Pharmacodynamic profile of telithromycin against macrolide- and fluoroquinolone-resistant Streptococcus pneumoniae in a neutropenic mouse thigh model. Antimicrob Agents Chemother 49:188–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Togami K, Chono S, Seki T et al (2010a) Aerosol-based efficient delivery of telithromycin, a ketolide antimicrobial agent, to lung epithelial lining fluid and alveolar macrophages for treatment of respiratory infections. Drug Dev Ind Pharm 36:861–866

    CAS  PubMed  Google Scholar 

  • Togami K, Chono S, Seki T et al (2010b) Intracellular pharmacokinetics of telithromycin, a ketolide antibiotic, in alveolar macrophages. J Pharm Pharmacol 62:71–75

    CAS  PubMed  Google Scholar 

  • Traunmuller F, Fille M, Thallinger C et al (2009) Multiple-dose pharmacokinetics of telithromycin in peripheral soft tissues. Int J Antimicrob Agents 34:72–75

    PubMed  Google Scholar 

  • Treyaprasert W, Schmidt S, Rand KH et al (2007) Pharmacokinetic/pharmacodynamic modeling of in vitro activity of azithromycin against four different bacterial strains. Int J Antimicrob Agents 29:263–270

    CAS  PubMed  Google Scholar 

  • Van Bambeke F, Barcia-Macay M, Lemaire S et al (2006) Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr Opin Drug Discov Devel 9:218–230

    PubMed  Google Scholar 

  • Van Bambeke F, Harms JM, Van Laethem Y et al (2008) Ketolides: pharmacological profile and rational positioning in the treatment of respiratory tract infections. Expert Opin Pharmacother 9:267–283

    PubMed  Google Scholar 

  • Vazifeh D, Preira A, Bryskier A et al (1998) Interactions between HMR 3647, a new ketolide, and human polymorphonuclear neutrophils. Antimicrob Agents Chemother 42:1944–1951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veber B, Vallee E, Desmonts JM et al (1993) Correlation between macrolide lung pharmacokinetics and therapeutic efficacy in a mouse model of pneumococcal pneumonia. J Antimicrob Chemother 32:473–482

    CAS  PubMed  Google Scholar 

  • Vesga O, Bonnat C, Craig WA (1997) In vivo pharmacodynamic activity of HMR 3647, a new ketolide. In: 37th Interscience conference on antimicrobial agents and chemotherapy, Toronto, Canada F-255

    Google Scholar 

  • Villa P, Sassella D, Corada M et al (1988) Toxicity, uptake, and subcellular distribution in rat hepatocytes of roxithromycin, a new semisynthetic macrolide, and erythromycin base. Antimicrob Agents Chemother 32:1541–1546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G, Niu D, Qiu YL et al (2004) Synthesis of novel 6,11-O-bridged bicyclic ketolides via a palladium-catalyzed bis-allylation. Org Lett 6:4455–4458

    CAS  PubMed  Google Scholar 

  • Wildfeuer A, Haberreiter A (1997) Intracellular activity of azithromycin against Mycobacterium avium complex in human macrophages. Arzneimittelforschung 47:866–868

    CAS  PubMed  Google Scholar 

  • Woosley LN, Castanheira M, Jones RN (2010) CEM-101 activity against Gram-positive organisms. Antimicrob Agents Chemother 54:2182–2187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeitlinger M, Wagner CC, Heinisch B (2009) Ketolides–the modern relatives of macrolides: the pharmacokinetic perspective. Clin Pharmacokinet 48:23–38

    CAS  PubMed  Google Scholar 

  • Zhanel GG, Dueck M, Hoban DJ et al (2001) Review of macrolides and ketolides: focus on respiratory tract infections. Drugs 61:443–498

    CAS  PubMed  Google Scholar 

  • Zhanel GG, Walters M, Noreddin A et al (2002) The ketolides: a critical review. Drugs 62:1771–1804

    CAS  PubMed  Google Scholar 

  • Zhanel GG, DeCorby M, Noreddin A et al (2003) Pharmacodynamic activity of azithromycin against macrolide-susceptible and -resistant Streptococcus pneumoniae simulating clinically achievable free serum, epithelial lining fluid and middle ear fluid concentrations. J Antimicrob Chemother 52:83–88

    CAS  PubMed  Google Scholar 

  • Zhanel GG, Johanson C, Laing N et al (2005) Pharmacodynamic activity of telithromycin at simulated clinically achievable free-drug concentrations in serum and epithelial lining fluid against efflux (mefE)-producing macrolide-resistant Streptococcus pneumoniae for which telithromycin MICs vary. Antimicrob Agents Chemother 49:1943–1948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Wang X, Lin X et al (2010) High azithromycin loading powders for inhalation and their in vivo evaluation in rats. Int J Pharm 395:205–214

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Van Bambeke Pharm.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Bambeke, F. (2014). Macrolides and Ketolides. In: Vinks, A., Derendorf, H., Mouton, J. (eds) Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75613-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75613-4_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75612-7

  • Online ISBN: 978-0-387-75613-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics