Skip to main content

Gene Expression in Working Skeletal Muscle

  • Conference paper
Hypoxia and the Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 618))

Abstract

A number of molecular tools enable us to study the mechanisms of muscle plasticity. Ideally, this research is conducted in view of the structural and functional consequences of the exercise-induced changes in gene expression. Muscle cells are able to detect mechanical, metabolic, neuronal and hormonal signals which are transduced over multiple pathways to the muscle genome. Exercise activates many signaling cascades - the individual characteristic of the stress leading to a specific response of a network of signaling pathways. Signaling typically results in the transcription of multiple early genes among those of the well known fos and jun family, as well as many other transcription factors. These bind to the promoter regions of downstream genes initiating the structural response of muscle tissue. While signaling is a matter of minutes, early genes are activated over hours leading to a second wave of transcript adjustments of structure genes that can then be effective over days. Repeated exercise sessions thus lead to a concerted accretion of mRNAs which upon translation results in a corresponding protein accretion. On the structural level, the protein accretion manifests itself for instance as an increase in mitochondrial volume upon endurance training or an increase in myofibrillar proteins upon strength training. A single exercise stimulus carries a molecular signature which is typical both for the type of stimulus (i.e. endurance vs. strength) as well as the actual condition of muscle tissue (i.e. untrained vs. trained). Likewise, it is clearly possible to distinguish a molecular signature of an expressional adaptation when hypoxic stress is added to a regular endurance exercise protocol in well-trained endurance athletes. It therefore seems feasible to use molecular tools to judge the properties of an exercise stimulus much earlier and at a finer level than is possible with conventional functional or structural techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey DM and Dadfhvies B. Physiological implications of altitude training for endurance performance at sea level: A review. Br J Sports Med31: 183-190, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Bigland Ritchie B and Woods JJ. Integrated electromyogram and oxygen uptake during positive and negative work. J Physiol (London)260: 267-277, 1976.

    CAS  Google Scholar 

  3. Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc38: 1950-1957, 2006.

    Article  CAS  PubMed  Google Scholar 

  4. Booth FW and Thomason DB. Molecular and cellular adaptation of muscle in response to exercise - Perspective of various models. Physiol Rev71 (2): 541-585, 1991.

    CAS  PubMed  Google Scholar 

  5. Carson JA and Wei L. Integrin signaling’s potential for mediating gene expression in hypertrophying skeletal muscle [In Process Citation]. J Appl Physiol 2000 Jan;88(1):337-4388: 337-343, 2000.

    CAS  Google Scholar 

  6. Chin ER. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol99: 414-423, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Colliander EB and Tesch PA. Bilateral eccentric and concentric torque of quadriceps and hamstring muscles in females and males. Eur J Appl Physiol59: 227-232, 1989.

    Article  CAS  Google Scholar 

  8. Dufour SP, Ponsot E, Zoll J, Doutreleau S, Lonsdorfer-Wolf E, Geny B, Lampert E, Fluck M, Hoppeler H, Billat V, Mettauer B, Richard R and Lonsdorfer J. Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J Appl Physiol100: 1238-1248, 2006.

    Article  CAS  PubMed  Google Scholar 

  9. Farthing JP and Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol89: 578-586, 2003.

    Article  PubMed  Google Scholar 

  10. Fück, M. Molekulaere Mechanismen der muskulaeren Anpassung. Therapeut. Umschau 60, 371-38 2003.

    Article  Google Scholar 

  11. Fück M, Carson JA, Gordon SE, Ziemiecki A and Booth FW. Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol277: C152-C162, 1999.

    Google Scholar 

  12. Hardie DG and Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda )21: 48-60, 2006.

    CAS  Google Scholar 

  13. Hood DA, Irrcher I, Ljubicic V and Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol209: 2265-2275, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Hoppeler H. Exercise-induced ultrastructural changes in skeletal muscle. Int J Sport Med7: 187-204, 1986.

    Article  CAS  Google Scholar 

  15. Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P and Weibel ER. Endurance training in humans: Aerobic capacity and structure of skeletal muscle. J Appl Physiol59: 320-327, 1985.

    CAS  PubMed  Google Scholar 

  16. Hoppeler H, Vogt M, Weibel ER and Fück M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol88: 109-119, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Hoppeler H and Weibel ER. Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand168: 445-456, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Klossner S, Däpp C, Schmutz S, Vogt M, Hoppeler H and Fück M. Muscle transcriptome adaptation with mild eccentric ergometer exercise. submitted to: Eur J Physiol2007.

    Google Scholar 

  19. Lastayo PC, Reich TE, Urquhart M, Hoppeler H and Lindstedt SL. Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen. Am J Physiol276: R611-5, 1999.

    CAS  PubMed  Google Scholar 

  20. Levine BD. Intermittent hypoxic training: fact and fancy. High Alt Med Biol3: 177-193, 2002.

    Article  PubMed  Google Scholar 

  21. Macintyre DL, Sorichter S, Mair J, Berg A and McKenzie DC. Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol84: 180-186, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Meeuwsen T, Hendriksen IJ and Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol84: 283-290, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer K, Steiner R, Lastayo P, Lippuner K, Allemann Y, Eberli F, Schmid J, Saner H and Hoppeler H. Eccentric exercise in coronary patients: central hemodynamic and metabolic responses. Med Sci Sports Exerc35: 1076-1082, 2003.

    Article  PubMed  Google Scholar 

  24. Padilla S, Mujika I, Angulo F and Goiriena JJ. Scientific approach to the 1-h cycling world record: a case study. J Appl Physiol89: 1522-1527, 2000.

    CAS  PubMed  Google Scholar 

  25. Pilegaard H, Ordway GA, Saltin B and Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab279: E806-E814, 2000.

    CAS  PubMed  Google Scholar 

  26. Puntschart A, Claassen H, Jostarndt K, Hoppeler H and Billeter R. mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance trained athletes. Am J Physiol269: C619-C625, 1995.

    CAS  PubMed  Google Scholar 

  27. Romer LH, Birukov KG and Garcia JG. Focal adhesions: paradigm for a signaling nexus. Circ Res98: 606-616, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exercise20: S135- S145, 1988.

    Article  CAS  Google Scholar 

  29. Schmutz S, Dapp C, Wittwer M, Vogt M, Hoppeler H and Fluck M. Endurance training modulates the muscular transcriptome response to acute exercise. Pflugers Arch451: 678-687, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Solomon AM and Bouloux PM. Modifying muscle mass - the endocrine perspective. J Endocrinol191: 349-360, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Terrados N, Jansson E, Sylven C and Kaijser L. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol68: 2369-2372, 1990.

    CAS  PubMed  Google Scholar 

  32. Terrados N, Sylven C, Kaijser L and Jansson E. Is hypoxia a stimulus for the synthesis of oxidative enzymes and myoglobin? Can J Sport Sci (Proceedings of the 7th international biochemistry of exercise conference, London, Ontario, June 1 4, 1988) 1988. 3

    Google Scholar 

  33. Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc20: S132-S134, 1988.

    Article  CAS  PubMed  Google Scholar 

  34. Vikne H, Refsnes PE, Ekmark M, Medbo JI, Gundersen V and Gundersen K. Muscular performance after concentric and eccentric exercise in trained men. Med Sci Sports Exerc38: 1770-1781, 2006.

    Article  PubMed  Google Scholar 

  35. Vogt M, Billeter R and Hoppeler H. Einfluss von Hypoxie auf die muskulaere Leistungsfaehigkeit: “Living low - Training high”. Therapeutische Umschau60: 419-424, 2003.

    Google Scholar 

  36. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R and Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol91: 173-182, 2001.

    CAS  PubMed  Google Scholar 

  37. Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura-Clapier R, Vogt M, Hoppeler H, Richard R and Fluck M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol100: 1258-1266, 2006.

    Article  CAS  PubMed  Google Scholar 

  38. Zumstein A, Mathieu O, Howald H and Hoppeler H. Morphometric analysis of the capillary supply in skeletal muscles of trained and untrained subjects - Its limitations in muscle biopsies. Pfluegers Arch397: 277-283, 1983.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Hoppeler, H., Klossner, S., Flück, M. (2007). Gene Expression in Working Skeletal Muscle. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_19

Download citation

Publish with us

Policies and ethics