Food Emulsifiers and Their Applications pp 39-62 | Cite as
Analysis of Food Emulsifiers
- 3 Citations
- 5.6k Downloads
Analytical methods used to measure food emulsifiers are derived from lipid analysis (Firestone, 2001; Otles, 2004; Wood et al., 2004; Byrdwell, 2005a). Test Methods are of several types and are carried out for several reasons. Food additives are regulated by government agencies to ensure health and safety. Specifications may be set for starting materials, products, processing methods, and maximum use levels in foods. Tests may also be necessary to ensure the absence of degradation products, microorganisms and foreign materials. Composition of emulsifiers may be related to their functional performance in finished foods. Nongovernmental specifications for food emulsifiers may be negotiated between the supplier and the customer, usually a processed food producer. Tests nay be carried out in the manufacturer’s processing line or control laboratory, after which the manufacturer may issue a certificate of analysis. The customer may check the analyses as part of the receiving process, and accept or reject the shipment. Disputes may be submitted to an independent testing laboratory for resolution. Standardized test methods have been developed by professional societies, such as, the Association of Official Analytical Chemists (AOAC) (Horvitz, 2005), the American Oil Chemists Society (AOCS) (Firestone, 2005a), the International Union of Pure and Applied Chemistry (IUPAC) (Paquot and Hauffen, 1987), Leatherhead Foods Research Association, and the National Academy of Sciences (Food Chemicals Codex) (Codex, 2004).
To determine emulsifiers in intact food products, fats and emulsifiers must first be extracted. Fats and oils are soluble in nonpolar solvents, such as hexane and toluene. However, emulsifiers are amphiphilic and therefore, less soluble, particularly when emulsifier concentration is high compared to total lipid. Chloroform and chloroform/ methanol have been effective for extraction of emulsifiers (Flor and Prager, 1980). Because these solvents are classified as hazardous waste, provisions should be made for recycling. In cases where the lipid concentration is high relative to emulsifier concentration, extraction with hot hexane, followed by acetonitrile was reported (Halverson and Qvist, 1974). Solid samples (e.g., cakes or powdered coffee whiteners) may be conveniently extracted in a Soxhlet extraction apparatus. Liquid samples (e.g., milk or ice cream mix) are generally extracted in a separatory funnel or countercurrent distribution apparatus. Another factor complicating extraction is that emulsifiers may be tightly complexed with starches or proteins, or may be encapsulated in a biopolymer matrix. Pretreatment with amylase enzyme may overcome this problem (Jodlbauer, 1976).
Keywords
High Performance Liquid Chromatography Sucrose Ester Food Emulsifier Slip Melting Point Polyglycerol EsterPreview
Unable to display preview. Download preview PDF.
References
- Biacs, O. et al. (1978). Acta Aloment Acad. Sci. Hung. 7(3): 181–93.Google Scholar
- Blanco, M. et al. (2004). Anal. Chim. Acta 521(13): 143–8.CrossRefGoogle Scholar
- Bosco, M. et al. (1997). Anal. Biochem. 245(1): 38–47.CrossRefGoogle Scholar
- Bruemmer, J. M. (1971). Brot Gebaeck 25(11): 217–20.Google Scholar
- Brueschweiler, H. (1977). Mitt. Geb. Lebensmittelunters. Hyg. 68(1): 46–63.Google Scholar
- Brueschweiler, H. and Dieffenbacher, A. (1991). Pure Appl. Chem. 63(8): 1153–62.CrossRefGoogle Scholar
- Bruns, A. (1988). Fett Wiss. Technol. 90(8): 289–91.CrossRefGoogle Scholar
- Byrdwell, W. C. (2005a). Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques. Champaign, American Oil Chemists’ Society.CrossRefGoogle Scholar
- Byrdwell, W. C. (2005b). Atmospheric Pressure Ionization Techniquws in Modern Lipid Analysis. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 1–18.CrossRefGoogle Scholar
- Byrdwell, W. C. (2005c). Dual Parallel Liquid Chromatography/Mass Spectrometry for Lipid Analysis. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 510–76.CrossRefGoogle Scholar
- Cai, S.-S. and Syage, I. (2006). J. Chromatogr. AII 10: 15–26.CrossRefGoogle Scholar
- Christie, W. W. (1992). Detectors for High Performance Liquid Chromatography of Lipids with Special Reference to Evaporative Light Scattering Detection. Advances in Lipid Methhodology. W. W. Christie. Ayr, Scotland, The Oily Press. One: 269–72.Google Scholar
- Christie, W. W. (1996). Separation of Phospholipid Classes by High Performance Liquid Chromatography. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three: 77–108.Google Scholar
- Codex, F. C. (2004). Food Chemicals Codex: Effective January 1, 2004, Washington, National Academies Press.Google Scholar
- Dang, H. V. et al. (2006). J. Pharm. Biomed. Anal. 40(5): 155–65.Google Scholar
- Daniels, D. H. (1982). J. Assoc. Off. Anal. Chem. 65(1): 162–5.Google Scholar
- Daniels, D. H. et al., (1985). J. Agric. Food Chem. 33(3): 368–72.CrossRefGoogle Scholar
- DeMeulenaer, B. et al. (2000). H. Chromatogr. 896(1–2): 239–51.CrossRefGoogle Scholar
- Dieffenbacher, A. et al. (1988). Rev. Fr. Corps Gras 35(12): 495–9.Google Scholar
- Dieffenbacher, A. et al. (1989). Rev. Fr. Corps Gras 36(2): 64.Google Scholar
- Diepenmaat-Walters, M. G. E. et al. (1997). J. Am. Soc. Brew. Chem. 55(4): 147–52.Google Scholar
- Duden, R. and Fricker, A. (1977). Fette Seifen Anstrichm. 79(12): 489–91.CrossRefGoogle Scholar
- El-Sebaiy, L. A. et al. (1980). Food Chem. 5(3): 217–28.CrossRefGoogle Scholar
- Erdahl, W. L. et al. (1973). J. Am. Oil Chem. Soc. 50(12): 513–5.CrossRefGoogle Scholar
- Everts, S. and Davis, J. H. (2000). Biophys. J. 79(2): 885–7.CrossRefGoogle Scholar
- Filip, V. and Kleunova, M. (1993). Z. Lebensm. Unters. Forsch 196(6): 532–35.CrossRefGoogle Scholar
- Firestone, D. (2001). Physical and Chemical Characteristics of Oils, Fats, and Waxes. Champaign, IL, The American Oil Chemists Society.Google Scholar
- Firestone, D., Ed. (2005a). Official Methods and Recommended Practices of the AOCS. Champaign, IL, The American Oil Chemists Society.Google Scholar
- Firestone, D., Ed. (2005b). AOCS Recommended Practice Cd-11c–93: Quantitative Separation of Monoglycerides, Diglycerides, and Triglycerides by Silica Gel Column Chromatography.Google Scholar
- Firestone, D., Ed. (2005c). AOCS Recommended Practice Ja 7–86: Phospholipids in Lecithin Concentrates by Thin Layer Chromatography.Google Scholar
- Firestone, D., Ed. (2005d). AOCS Official Method Cd 11–57: alpha-Monoglycerides.Google Scholar
- Firestone, D., Ed. (2005e). AOCS Official Method Ca 14–56: Total Free and Combined Glycerol: -Iodimetric -Periodic Acid Method.Google Scholar
- Firestone, D., Ed. (2005f). AOCS Official Method Cd 3d–63: Acid Value.Google Scholar
- Firestone, D., Ed. (2005g). AOCS Official Method Ca 5a–40: Free Fatty Acids.Google Scholar
- Firestone, D., Ed. (2005h). AOCS Official Method Tg 1–64: Iodine Value-Wijs method & AOCS Recommended Practice Ja 14–91: Iodine Value—Wijs Method (for lecithin).Google Scholar
- Firestone, D., Ed. (2005i). AOCS Recommended Practice Cd 1b–87: Iodine Value of Fats and Oils—Cyclohexane Method.Google Scholar
- Firestone, D., Ed. (2005j). AOCS Official Method Cd 8–53: Peroxide Value - Acetic Acid-Chloroform Method & AOCS Official Method Ja 8–87: Peroxide Value (for lecithin).Google Scholar
- Firestone, D., Ed. (2005k). AOCS Official Method Cd 8b–90: Peroxide Value—Acetic Acid-Isooctane Method.Google Scholar
- Firestone, D., Ed. (2005l). AOCS Recommended Practice Cd 3c–91: Saponification Value —Modified Method Using Methanol & AOCS Official Method Tl 1a–64: Saponification Value.Google Scholar
- Firestone, D., Ed. (2005m). AOCS Official Method Cd 13–60: Hydroxyl Value.Google Scholar
- Firestone, D., Ed. (2005n). AOCS Official Method Cd 5–40: Reichert-Meisel, Polanske, amd Kirschner Values—Modified AOAC Methods.Google Scholar
- Firestone, D., Ed. (2005o). AOCS Official Method Ca 2e–84: Moisture—Karl Fischer Reagent.Google Scholar
- Firestone, D., Ed. (2005p). AOCS Official Method Tb 2–64: Moisture - Modified Karl Fischer Reagent.Google Scholar
- Firestone, D., Ed. (2005q). AOCS Official Method Ja 2b–87: Moisture - Karl Fischer Reagent.Google Scholar
- Firestone, D., Ed. (2005r). AOCS Recommended Practice Cc 17–95: Soap in Oil.Google Scholar
- Firestone, D., Ed. (2005s). AOCS Official Method Ca 12–55: Phosphorous, and AOCS Official Method Ca 12a–02L Colorimetric Determination of Phosphorous Content in Fats and Oils.Google Scholar
- Firestone, D., Ed. (2005t). AOCS Official Method Cc 13a–92: Color—Lovibond Method Using Color Glasses Calibrated in Accordance with the Lovibond Tintometer Color Scale.Google Scholar
- Firestone, D., Ed. (2005u). AOCS Official Method Cc 13b–45: Color—Wesson Method Using Colored Glasses Calibrated in Accordance with the AOCS Tintometer Scale.Google Scholar
- Firestone, D., Ed. (2005v). AOCS Official Method Ja 9–87: Gardner Color and AOCS Official Method Jd 1a–64 Color—Gardner 1963 (Gardner Standards).Google Scholar
- Firestone, D., Ed. (2005w). AOCS Official Method Cc 13a–43: Color—FAC Standard Color.Google Scholar
- Firestone, D., Ed. (2005x). AOCS Official Method Td 2a–64: Color—Photometric Index and AOCS Official Method Cc 13c–50: Color—Spectrophotometric Method.Google Scholar
- Firestone, D., Ed. (2005y). AOCS Official Method Cc 7–25: Refractive Index and AOCS Official Method Tp 1a–64: Refractive Index.Google Scholar
- Firestone, D., Ed. (2005z). AOCS Official Method Cc 1–25: Melting Point—Capillary Tube Method.Google Scholar
- Firestone, D., Ed. (2005aa). AOCS Official Method Cc 3–25: Slip Melting Point—AOCS Standard Open Tube Melting Point and AOCS Official Metjod Cc 3b–92:Slip Melting Point—ISO Standard.Google Scholar
- Firestone, D., Ed. (2005ab). AOCS Official Method Cc 18–80: Dropping Point.Google Scholar
- Firestone, D., Ed. (2005ac). AOCS Official Methods Ja 11–87 and Tq 1a–64: Viscosity of Transparent Liquids by Bubble Time Method.Google Scholar
- Firestone, D., Ed. (2005ad). AOCS Recommended Practice Ja 10–87: Brookfield Viscosity.Google Scholar
- Firestone, D., Ed. (2005ae), AOCS Official Method Cc 10a–25: Specific Gravity of Liquid Oils and Fats.Google Scholar
- Firestone, D., Ed. (2005af). AOCS Official Method Cc 10b–25: Specific Gravity of Solid Fats and Waxes.Google Scholar
- Firestone, D., Ed. (2005ag). AOCS Official Method Ce 1–62: Fatty Acid Composition by Gas Cjromatography.Google Scholar
- Firestone, D., Ed. (2005ah). AOCS Official Method Cd 11b–91: Determination of Mono- and Diglycerides by Capillary Gas Chromatography.Google Scholar
- Firestone, D., Ed. (2005ai). AOCS Recommended Practice Cd 25–96: Heat Transfer Fluids in Oils—DowthermTM by GC.Google Scholar
- Firestone, D., Ed. (2005aj). AOCS Official Method Cd 11d–96: Mono and Diglycerides Determination by HPLC-ELSD and AOCS Official Method Ja 7b–91: Determination of Lecithin Phospholipids by HPLC.Google Scholar
- Firestone, D., Ed. (2005ak). AOCS Official Method Ca 14b–96: Quantification of Free Glycerine in Selected Glycerides and Fatty Acid Methyl Esters by HPLC and Laser Light-Scattering Detection.Google Scholar
- Firestone, D., Ed. (2005al). AOCS Recommended Practice Cd 25a–00: Thermal Heating Fluids in Edible Oils and Oleochemicals—Dowtherm A by HPLC Coupled with Fluorescence Detector.Google Scholar
- Firestone, D., Ed. (2005am). AOCS Official Method Ca 12a–02: Colorimetroc Determination of Phosphprous Content in Fats and Oils.Google Scholar
- Firestone, D., Ed. (2005an). AOCS Recommended Practice Cd 1e–01: Determination of Iodine Value by Pre-calibrated FT-NIR with Disposable Vials.Google Scholar
- Firestone, D., Ed. (2005ao). AOCS Official Method Ca 18c–91: Determination of Lead by Direct Graphite Furnace Atomic Absorption Spectrophotometry.Google Scholar
- Firestone, D., Ed. (2005ap). AOCS Official Method Ca 15–75: Analysis for Chromoim, Copper, Iron, and Nickel in Vegetable Oils by Atomic Absorption Spectrophotometry.Google Scholar
- Firestone, D., Ed. (2005aq). AOCS Recommended Practice Ca 15b–87: Sodium and Calcium by Atomic Absorption Spectrophotomrytu amf AOCS Recommended Practice Ca 17–01: Determination of Trace Elements (Calcium, Copper, Iron, Magnesium, Nickel, Silicon, Sodium, Lead, and Cadmium) in Oil by Inductuvely Coupled Plasma Optical Emmision Spectroscopy.Google Scholar
- Firestone, D., Ed. (2005ar). AOCS Official Method Cd 16b–93: Solid Fat Content (SFC) by Low-Resolution Nuclear Magnetic Resonance - The Direct Method and AOCS Official Method Cd 16–81: Solid Fat Content (SFC) by Low-Resolution Nuclear Magnetic Resonance - The Indirect Method.Google Scholar
- Flor, E. V. and Prager, M. J. (1980). J. Assoc. Off. Anal. Chem. 63(1): 22–6.Google Scholar
- Franzke, C. (1977). Z. Lebensm. Unters. Forsch. 163(3): 206–7.CrossRefGoogle Scholar
- Franzke, C. and Kroll, J. (1980). Nahrung 24(1): 89–90.CrossRefGoogle Scholar
- Frison-Norrie, S. S., P. (2001). J. Agric. Food Chem. 49(7): 3335–40.CrossRefGoogle Scholar
- Gaonkar, A. and NcPherson, A., Ed. (2005). Ingredient Interactions: Effects on Food Quality. Food Science and Technology. Boca Raton, CRC Press.Google Scholar
- Garti, N. (1981). J. Liq. Chromatogr. 4(7): 1173–94.CrossRefGoogle Scholar
- Garti, N. and Ascerin, A. (1983). J. Am. Oil Chem. Soc. 60(6): 1151–4.CrossRefGoogle Scholar
- Gillet, B. et al. (1998). Analysis 26(3): M26–M33.CrossRefGoogle Scholar
- Glonek, T. and Merchant, R. E. (1996). 31P Nuclear Magnetic Resonance Profiling of Phospholipids. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three, 37–75.Google Scholar
- Goldstein, S. (1984). U. S. 4, 473, 651 A.Google Scholar
- Grdadolnik, J. and Hadm, D. (1993). Chem. Phys. Lipids 65(2): 121–32.CrossRefGoogle Scholar
- Gunstone, F. G. (1993). High Resolution 13C NMR Spectroscopy of Lipids. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Two, 1–68.Google Scholar
- Halverson, H. and Qvist, O. (1974). J. Am. Oil Chem. Soc. 51(4): 162–5.CrossRefGoogle Scholar
- Ham, X. and Gross, R. W. (2005). Toward Total Cellular Lipidome Analysis by ESI Mass Spectrometry from a Crude Lipid Extract. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 488–509.Google Scholar
- Hartman, L. et al. (1980). Analyst 105(1247): 173–6.CrossRefGoogle Scholar
- Hasenhuettl, G. L. et al. (1990). J. Am. Oil Chem. Soc. 67(11): 797–9.CrossRefGoogle Scholar
- Horvitz, W. Ed. (2005). Official Methods of Analysis of AOAC International. AOAC International, Gaithersburg, MD.Google Scholar
- Hsieh, J. Y. et al. (1981). J. Chromatogr. 208(2): 398–403.CrossRefGoogle Scholar
- Hummel, D. (2000a). Handbook of Surfactant Analysis. New York, John Wiley & Sons: 232.Google Scholar
- Hummel, D. (2000b). Handbook of Surfactant Analysis. New York, John Wiley & Sons: 233.Google Scholar
- Hurst, W. J. and Martin, R. A. (1984). J. Am. Oil Chem. Soc. 61(9): 1462–3.CrossRefGoogle Scholar
- Huyghebaert, G. and Baert, L. (1992). Chromatographia 34(11–12): 557–62.Google Scholar
- Ingber, N. (1986). Determinarion of Hydroxyl Value by NIR, Personal Communication.Google Scholar
- Istratov, V. et al. (2003). Tetrahedron 59(22): 4017–24.CrossRefGoogle Scholar
- Jakubska, E. et al. (1977). Acta Aliment Pol. 3(1): 79–84.Google Scholar
- Jodlbauer, H. D. (1976). Getreide Mehl Brot 30(7): 181–7.Google Scholar
- Judlbauer, H. D. (1981). Veroeff. Arbeitsgem. Getreideforsch 183: 42–9.Google Scholar
- Kaitaranta, J. K. and Bessman, S. P. (1981) Anal. Chem 53(8): 1232–1235.CrossRefGoogle Scholar
- Kanematsu, H. et al. (1972). Eiyo Shokuryo 25(1): 46–50.Google Scholar
- Karrer, R. and Herbertg, H. (1992). J. High Res. Chromatog. 15(9): 585–9.CrossRefGoogle Scholar
- Kato, H. et al. (1989). J. Assoc. Offic. Anal. Chem. 72(1): 27–9.Google Scholar
- Kimura, S. et al. (1969). Nippon Shokuhin Kogyo Gakkai-shi 16(9): 425–9.Google Scholar
- Kostelnik, R. J. and Castellano, S. M. (1973). J. Magn. Reson. 9(2): 291–5.Google Scholar
- Kumar, T. N. et al. (1984). J. Chromatog. A 298: 360–5.CrossRefGoogle Scholar
- Larsen, A. and Hyattumff, E. (2005). Analysis of Phospholipids by Liquid Chromatography Coupled with On-line Electrospray Ionization Mass Spectrometry and Tandem Mass Spectrometry. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society, 19–60.Google Scholar
- Lee, T. (1988). J. Assoc. Off. Anal. Chem. 71(4): 785–8.Google Scholar
- Lee, T. et al. (1993). J. Am. Oil Chem. Soc. 70(4): 343–7.CrossRefGoogle Scholar
- Lendrath, G. (1990). J. Chromatogr. 502(2): 385–92.CrossRefGoogle Scholar
- Lew, H. (1975). Veroff. Landwirtsch. Chem. Bundesversuchsanst. Linz 97(10): 10.Google Scholar
- Li, Y.-K. et al. (2002). Sepu 20(5): 476–478.Google Scholar
- Lindblom, G. (1996). Nuclear Magnetic Spectroscopy and Lipid Phase Behavior and Lipid Diffusion. Advances in Lipid Methodology. W. W. Christie. Ayr, Scotland, The Oily Press. Three, 132–99.Google Scholar
- Lundquist, G. and Meloan, C. (1971). Anal. Chem. 43(8): 1122–3.CrossRefGoogle Scholar
- Luquain, C. et al. (2001). Anal. Biochem. 296(1): 41–48.CrossRefGoogle Scholar
- Macka, M. et al. (1994). J. Chromatogr. 675(1–2): 267–70.CrossRefGoogle Scholar
- Martin, E. et al. (1989). Mitt. Geb. Lebensmittelunters Hyg. 79(4): 406–12.Google Scholar
- Mazur, A. W. et al. (1991). Chem. Phys. Lipids 60(2): 189–99.CrossRefGoogle Scholar
- Melton, S. L. (1992). J. Am. Oil Chem. Soc. 69(8): 784–8.CrossRefGoogle Scholar
- Moelering, H. and Bergmeyer, H. U. (1974). Methoden Enzym. Anal. 3. Neubearbeitete Erweite:Te Aufl. H. Bergmeyer. New York, Academic. 2: 1860–4.Google Scholar
- Mueller, H. (1977). Fette Seifen Anstrichm. 79(6): 259–61.CrossRefGoogle Scholar
- Murakami, C. et al. (1989). Shokuhin Eiseigaku Zasshi 30(4): 306–13.Google Scholar
- Murgia, S. et al. (2003). Lipids 38(5): 585–91.CrossRefGoogle Scholar
- Murohy, J. and Grislett, L. (1969). J. Am. Oil Chem. Soc. 46(7): 384.CrossRefGoogle Scholar
- Murphy, J. M. and Hibbert, H. R. (1969). J. Food Technol. 4(3): 227–34.CrossRefGoogle Scholar
- Murphy, J. M. and Scott, C. C. (1969). Analyst 94(1119): 481–3.CrossRefGoogle Scholar
- Nakanishi, H. and Tsuda, T. (1983). Shokuhin Eisergaku Zasshi 24(5): 474–9.Google Scholar
- Nunez, A. et al. (2005). Liquid Chromatography/Mass Sprvtrometry Analysis of Biosurfactant Glycolipids. Modern Methods for Lipid Analysis. W. C. Byrdwell. Champaign, IL, American Oil Chemists Society: 447–71.Google Scholar
- Olsson, U. et al. (1990). J. Planar. Chromatogr.–Mod. TLC 3: 55–60.Google Scholar
- Paganuzzi, V. (1987). Riv. Ital. Sostanze Grasse 61(10): 411–14.Google Scholar
- Paquot, C. and Hauffen, A. (Eds.) (1987). IUPAC Standard Methods of Analysis of Oils, Fats, and Derivatives. London, Blackwell.Google Scholar
- Pohle, W. et al. (1997). J. Mol. Struct. 408–409: 273–7.CrossRefGoogle Scholar
- Press, K. et al. (1981). J. Agric. Food Chem. 29(5): 1096–8.CrossRefGoogle Scholar
- Ranger, B. and Wenz, K. (1989). J. Planar. Chromatogr.–Mod. TLC 2(1): 24–7.Google Scholar
- Regula, E. (1975). J. Chromatogr. 115(2): 639–44.CrossRefGoogle Scholar
- Rhee, J. S. and Shin, M. G. (1982). J. Am. Oil Chem. Soc. 59(2): 98–9.CrossRefGoogle Scholar
- Rilsom, T. and Hoffmayer, L. (1978). J. Am. Oil Chem. Soc. 55(9): 649–52.CrossRefGoogle Scholar
- Sacchi, P. et al. (1990). Revista Italiano delle Sostanze Grasse 67(5): 245–52.Google Scholar
- Saito, K. et al. (1987). Shokuhin Eisaigaku Zasshi 28(5): 372–7.Google Scholar
- Schmid, M. J. and Ottender, H. (1976). Getreide Mehl Brot 30(3): 62–4.Google Scholar
- Schuetze, T. (1977). Nahrung 21(5): 405–15.CrossRefGoogle Scholar
- Schuyl, P. J. W. and van Platerink, C. J. (1994). Analysis of Sucrose Polyesters with Electrospray Mass Spectrometry. 42nd ASMS Conference on Mass Spectrometry, Chicago, IL.Google Scholar
- Senelt, S. et al. (1986). Turk Hij. Deney. Biyol. Derg. 43(1): 23–35.Google Scholar
- Sheeley, D. M. et al. (1986). Spectroscopy 1(2): 38–9.Google Scholar
- Shmidt, A. A. et al. (1976). Khimicheskava Promyshlennost 8: 598–600.Google Scholar
- Shmidt, A. A. et al. (1979) Lebensmittelindustrie 26(4): 172–173.Google Scholar
- Sotirhos, N. et al. (1986). Dev. Food Sci. 12: 601–8.Google Scholar
- Tajano, S. and Kondoh, Y. (1987). J. Am. Oil Chem. Soc. 64(7): 1001–3.CrossRefGoogle Scholar
- Takagi, T. and Itabashi, Y. (1986). Yukagaku 35(9): 747–50.Google Scholar
- Takagi, T. and Ando, Y. (1994). J. Am. Oil Chem. Soc. 71(4): 459–60.CrossRefGoogle Scholar
- Tanaka, M. et al. (1979). Yukagaku 28(2): 96–9.Google Scholar
- Tonogau, Y. et al. (1987). Shokuhin Eisaigaku Zasshi 28(6): 427–35.Google Scholar
- Trautler, H. and Nikiforov, A. (1984). Anal. Chem. Symp. Ser. 21: 299–304.Google Scholar
- Tsuda, T. et al. (1984). J. Assoc. Off. Anal. Chem. 67(6): 1149–51.Google Scholar
- Tumanaka, K. and Fujita, N. (1990). Yukagaku 19(6): 393–7.Google Scholar
- Uematsu, Y. et al. (2001). J. AOAC Int. 84(2): 498–506.Google Scholar
- Vyncke, W. and Lagrou, F. (1973). Meded. Fac. Landbouwwetensch 38(3): 235–52.Google Scholar
- Watanabe, M. et al. (1986). Yakagaku 35(12): 1018–24.Google Scholar
- Wood, E. et al. (2004). Analytical Methods for Food Additives. Boca Raton, CRC Press.Google Scholar
- Wyrziger, J. (1968). Ber. Getreidechem. Tag Detmold. 45–57.Google Scholar
- Yamanaka, S. and Kudo, K. (1991). CA 115:123048. Japan 03107765.Google Scholar
- Yusupoca, I. et al. (1976). Khim. Prom-St. 598–600, CA 88:35919.Google Scholar