Skip to main content

Synaptic Vesicle Cycle at Nerve Terminals

  • Chapter
Molecular Pain
  • 1055 Accesses

Abstract

Synaptic vesicle fusion at the plasma membrane is followed by vesicle retrieval. There are three different pathways for retrieving vesicles: classic clathrin-mediated endocytosis, a “kiss-and-run” form of endocytosis, and bulk endocytosis. These forms of endocytosis may take as long as tens to hundreds of seconds or as short as one second or less. The time course of endocytosis is determined by the neuronal firing frequency and duration. The dynamic time course could be a result of multiple endocytic pathways and/or regulation by a variety of modulators. The newly formed vesicles via various endocytic pathways may join the readily releasable pool or the reserve pool, likely depending on which pathway they are generated. Vesicles in the reserve pool can be mobilized to the readily releasable pool, when the latter is depleted. Vesicle recycling is critical for the maintenance of transmitter release during repetitive stimulation. Regulation of any step in the vesicle cycling process, including endocytosis, could thus provide a mechanism by which synaptic plasticity is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Citations

Discovery Citations

  • Albillos A, Dernick G, Horstmann H, Aimers W, Alvarez de Toledo G, Lindau M. 1997. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature, 389: 509–512.

    Article  PubMed  CAS  Google Scholar 

  • Aravanis AM, Pyle JL, Tsien RW. 2003. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature, 423: 643–647.

    Article  PubMed  CAS  Google Scholar 

  • Artalejo CR, Elhamdani A, Palfrey HC. 2002. Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin-and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci USA, 99: 6358–6363.

    Article  PubMed  CAS  Google Scholar 

  • Beutner D, Voets T, Neher E, Moser T. 2001. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron, 29: 681–690.

    Article  PubMed  CAS  Google Scholar 

  • Bollmann JH, Sakmann B, Borst JG. 2000. Calcium sensitivity of glutamate release in a calyx-type terminal. Science, 289: 953–957.

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP, Mauro A. 1973. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol, 57: 499–524.

    Article  PubMed  CAS  Google Scholar 

  • Delgado R, Maureira C, Oliva C, Kidokoro Y, Labarca P. 2000. Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila, mutant, shibire. Neuron, 28: 941–953.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi SP, Stevens CF. 2003. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423: 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger R, Heinemann C, Neher E, Matthews G. 1994. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature, 371: 513–515.

    Article  PubMed  CAS  Google Scholar 

  • Heuser JE, Reese TS. 1973. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol, 57: 315–344.

    Article  PubMed  CAS  Google Scholar 

  • Klyachko VA, Jackson MB. 2002. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature, 418: 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Koenig JH, Ikeda K. 1989. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci, 9: 3844–3860.

    PubMed  CAS  Google Scholar 

  • Koenig JH, Ikeda K. 1996. Synaptic vesicles have two distinct recycling pathways. J Cell Biol, 135: 797–808.

    Article  PubMed  CAS  Google Scholar 

  • Kuromi H, Kidokoro Y. 1998. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron, 20: 917–925.

    Article  PubMed  CAS  Google Scholar 

  • Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW. 2000. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron, 28: 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Richards DA, Guatimosim C, Betz WJ. 2000. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron, 27: 551–559.

    Article  PubMed  CAS  Google Scholar 

  • Richards DA, Guatimosim C, Rizzoli SO, Betz WJ. 2003. Synaptic vesicle pools at the frog neuromuscular junction. Neuron, 39: 529–541.

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli SO, Betz WJ. 2004. The structural organization of the readily releasable pool of synaptic vesicles. Science, 303: 2037–2039.

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan S, Ryan TA. 2000. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol, 2:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Neher E. 2000. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature, 406: 889–893.

    Article  PubMed  CAS  Google Scholar 

  • Shupliakov O, Low P, Grabs D, Gad H, Chen H, David C, et al. 1997. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science, 276: 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Sun JY, Wu LG. 2001. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron, 30: 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Sun JY, Wu XS, Wu LG. 2002. Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature, 417: 555–559.

    Article  PubMed  CAS  Google Scholar 

  • Takei K, McPherson PS, Schmid SL, de Camilli P. 1995. Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature, 374: 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Mundigl O, Daniell L, de Camilli P. 1996. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol, 133: 1237–1250.

    Article  PubMed  CAS  Google Scholar 

  • Verstreken P, Kjaerulff O, Lloyd TE, Atkinson R, Zhou Y, Meinertzhagen IA, et al. 2002. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell, 109: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • von Gersdorff H, Matthews G. 1994. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature, 367: 735–739.

    Article  Google Scholar 

  • von Gersdorff H, Matthews G. 1994. Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature, 370: 652–655.

    Article  Google Scholar 

  • Wang CT, Lu JC, Bai J, Chang PY, Martin TF, Chapman ER, et al. 2003. Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature, 424: 943–947.

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Betz WJ. 1996. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron, 17: 769–779.

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Betz WJ. 1998. Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals. Biophys J, 74: 3003–3009.

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Wu LG. 2005. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron, 46: 633–645.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Higher Education Press

About this chapter

Cite this chapter

Wu, LG., Xu, J. (2007). Synaptic Vesicle Cycle at Nerve Terminals. In: Zhuo, M. (eds) Molecular Pain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75269-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75269-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75268-6

  • Online ISBN: 978-0-387-75269-3

Publish with us

Policies and ethics