Skip to main content

Second Messenger Pathways in Pain

  • Chapter
Molecular Pain

Abstract

G protein-coupled (GPCRs) and ionotropic receptors play an important role in normal and pathological pain transmission and modulation. Activation of these receptors either directly or indirectly further activates intracellular second messenger pathways to enhance or suppress nociceptive processing. These second messenger pathways are important both in the periphery as well as in the central nervous system in mediating pain states. Major second messengers associated with GPCRs are cAMP, cGMP, inositol triphosphate (IP3), Ca2+and diacylglyceride (DAG). These second messengers transmit the signals mainly by activating protein kinases, such as protein kinase A (by cAMP), protein kinase G (by cGMP), and protein kinase C (by DAG/ IP3). Ionotropic receptors also activate components of second messenger systems by increasing calcium influx. Preclinical data show that peripheral injury or inflammation activates cAMP-protein kinase A (PKA) and/ or DAG/IP3-PKC cascade in the periphery and/ or central nervous system (CNS), which leads to pain. The cyclic GMP-PKG system has been shown to either facilitate or inhibit nociception. However, the exact role of the cGMP-PKG pathway in nociception is unclear at this point, although there is sufficient evidence to show its involvement in the modulation of nociception. Experimental evidences suggest that, despite the ubiquitous distribution of these pathways throughout living cells, their selective modullation could lead to novel therapies in pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Citations

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson D. 1989. Molecular Biology of the Cell, (2ed). New York: Garlan Publishing.

    Google Scholar 

  • Bennett G, Deer T, Du Pen S, Rauck R, Yaksh T, Hassenbusch SJ. 2000. Future directions in the management of pain by intraspinal drug delivery. J Pain & Symp Manag, 20(2): S44–50.

    CAS  Google Scholar 

  • Greengard P. 1978. Phosphorylated proteins as physiological effectors. Science, 199: 146–152.

    PubMed  CAS  Google Scholar 

  • Hatt H. 1999. Modification of glutamate receptor channels: molecular mechanisms and functional consequences. Naturwissenschaften, 86(4): 177–186.

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS. 2003. Trafficking of NMD A receptors. Annu Rev Pharmacol Toxicol, 43: 335–358.

    PubMed  CAS  Google Scholar 

  • Willis WD. 2001. Role of neurotransmitters in sensitization of pain responses. Ann N Y Acad Sci, 933: 142–56.

    Article  PubMed  CAS  Google Scholar 

Discovery Citations

  • Aley KO, Levine JD. 1999. Role of protein kinase A in the maintenance of inflammatory pain. J Neurosci, 19(6): 2181–2186.

    PubMed  CAS  Google Scholar 

  • Aley KO, Messing RO, Mochly-Rosen D, Levine DJ. 2000. Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the e isozyme of protein kinase C. J Neurosci, 20(12): 4680–4685.

    PubMed  CAS  Google Scholar 

  • Anderson LE, Seybold VS. 2000. Phosphorylated cAMP response element binding protein increases in neurokinin-1 receptor immunoreactive neurons in rat spinal cord in response to formalin induced nociception. Neurosci Lett, 283(1): 29–32.

    PubMed  CAS  Google Scholar 

  • Baidan LV, Fertel RH, Wood JD. 1992. Effects of brain-gut related peptides on cAMP levels in myenteric ganglia of guinea-pig small intestine. Eur J Pharmacol, 225: 21–27.

    PubMed  CAS  Google Scholar 

  • Begon S, Pickering G, Eschalier A, Mazur A, Rayssiguier Y, Dubay C. 2001. Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats. Br J Pharm, 134: 1227–1236.

    CAS  Google Scholar 

  • Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW. 2003. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA, 100(21): 12480–12485.

    PubMed  CAS  Google Scholar 

  • Brenner GJ, Ji R-R, Shaffer S, Woolf CJ. 2004. Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the PKC-dependerit site, serine-896, in spinal cord dorsal horn neurons. J Neuroscience, 20: 375–384.

    Google Scholar 

  • Cerne R, Jaing M, Randic M. 1992. Cyclic adenosine 3′, 5′-monophosphate potentiates excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons. Brain Res, 596: 111–123.

    PubMed  CAS  Google Scholar 

  • Cerne R, Randic M. 1992. Modulation of AMPA and NMDA responses in rat spinal dorsal horn neurons by trans-1-aminocyclopentane-1, 3-dicarboxylic acid. Neurosci Lett, 14: 144(1–2): 180–184.

    PubMed  CAS  Google Scholar 

  • Cerne R, Rusin KI, Randic M. 1993. Enhancement of the N-methyl-D-aspartate response in spinal dorsal horn neurons by cAMP dependent protein kinase. Neurosci Lett, 161: 124–128.

    PubMed  CAS  Google Scholar 

  • Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA. 1999. Specific involvement of PKC-ε in sensitization of the neuronal response to painful heat. Neuron, 23(3): 617–624.

    PubMed  CAS  Google Scholar 

  • Cesare P, McNaughton P. 1996. A Novel heat-activ-ated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci USA, 93(26): 15435–15439.

    PubMed  CAS  Google Scholar 

  • Chen L, Huang L-YM. 1992. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature, 356: 521–523.

    PubMed  CAS  Google Scholar 

  • Coderre TJ, Yashpal K. 1994. Intracellular messengers contributing to persistant nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model. Eur J Neurosci, 6: 1328–1334.

    PubMed  CAS  Google Scholar 

  • Cui M, Nicol D. 1995. Cyclic AMP mediates the prostaglandin E2-induced potentiation of bradykinin excitation in rat sensory neurons. Neuroscience, 66(2): 459–466.

    PubMed  CAS  Google Scholar 

  • Dina OA, Barletta J, Chen X, Mutero A, Martin A, Messing RO, Levine JD. 2000. Key role for the epsilon isoform of protein kinase C in painful alcoholic neuropathy in the rat. J Neurosci, 20(22): 8614–8619.

    PubMed  CAS  Google Scholar 

  • Dina OA, Chen X, Reichling D, Levine JD. 2001. Role of protein kinase C ε and protein kinase A in a model of paclitaxel-induced neuropathy in the rat. Neuroscience, 108(3): 507–515.

    PubMed  CAS  Google Scholar 

  • Dolan S, Nolan A. 2001. Biphasic modulation of nociceptive processing by the cyclic AMP protein kinase A signaling pathway in sheep spinal cord. Neurosci Lett, 309: 157–160.

    PubMed  CAS  Google Scholar 

  • Duarte ID, Ferreira SH. 1992. The molecular mechanism of central analgesia induced by morphine or carbachol and the L-arginine-nitric oxide-cGMP pathway. Eur J Pharmacol, 6:221(1): 171–174.

    PubMed  CAS  Google Scholar 

  • Duman RS, Tallman JF, Nestler EJ. 1988. Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J Pharmacol Exp Ther, 246(3): 1033–1039

    PubMed  CAS  Google Scholar 

  • Evans AR, Vasko MR, Nicol GD. 1999. The cAMP transduction cascade mediates the PGE2 induced inhibition of potassium currents in rat sensory neurones. J Physiol, 516: 163–178.

    PubMed  CAS  Google Scholar 

  • Fang L, Wu J, Lin Q, Willis WD. 2003. Protein kinases regulate the phosphorylation of the GluRl subunit of AMPA receptors of spinal cord in rats following noxious stimulation. Mol Brain Research, 118: 160–165.

    Google Scholar 

  • Ferreira SH, Duarte ID, Lorenzetti BB. 1991. Molecular base of acetylcholine and morphine analgesia. Agents Actions Suppl, 32: 101–106.

    PubMed  CAS  Google Scholar 

  • Ferrer-Montiel A, Montal MS, Diaz-Munoz M, Montal M. 1999. Agonist-independent activation of acetylcholine receptor channels by protein kinase A phosphorylation. Proc Natl Acad Sci USA, 88: 10213–10217.

    Google Scholar 

  • Garry MG, Durnett Richardson J, Hargreaves KM. 1994. Carrageenan-induced inflammation alter the content of i-cGMP and i-cAMP in the dorsal horn of the spinal cord. Brain Res, 646: 135–139.

    PubMed  CAS  Google Scholar 

  • Ginty DD, Bonni A, Greenberg ME. 1994. Nerve growth factor activates a ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell, 77: 713–725.

    PubMed  Google Scholar 

  • Gold MS. Levin JD, Correa AM. 1998. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci, 18(24): 10345–10355.

    PubMed  CAS  Google Scholar 

  • Gold MS, Reichling DB, Shuster MJ, Levine DJ. 1996. Hyperalgesia agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA, 93: 1108–1112.

    PubMed  CAS  Google Scholar 

  • Gonzalez GA, Montminy MR. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell, 59(4): 675–680.

    PubMed  CAS  Google Scholar 

  • Granados-Soto V, Kalcheva I, Hua X, Newton A, Yaksh TL. 2000. Spinal PKC activity and expression: role in tolerance produced by continuous spinal morphine infusion. Pain, 85(3): 395–404.

    PubMed  CAS  Google Scholar 

  • Guan Y, Terayama R, Dubner R, Ren K. 2001. Plasticity in excitatory amino acid receptor-mediated descending pain modulation after inflammation. JPET, 300(2): 513–520.

    Google Scholar 

  • Guan Y, Guo W, Zou S-P, Dubner R, Ren K. 2003. Inflammation-induced upregulation of AMPA receptor subunit expression in brain stem pain modulatory circuitry. Pain, 104: 401–413.

    PubMed  CAS  Google Scholar 

  • Guan Y, Guo W, Robbins MT, Dubner R, Ren K. 2004. Changes in AMPA receptor phosphorylation in the rostral ventromedial medulla after inflammatory hyperalgesia in rats. Neuroscience Letters, 366: 201–205.

    PubMed  CAS  Google Scholar 

  • Hoeger Bement MK, Sluka KA. 2003. Phosphorylation of CREB and mechanical hyperalgesia is reversed by blockade of the cAMP pathway in a time-dependent manner after repeated intramuscular acid injections. J Neurosci, 23(13): 5437–5445.

    PubMed  CAS  Google Scholar 

  • Hu JY, Zhao ZQ. 2001. Differential contribution of NMDA and non-NMDA receptors to spinal fos expression evoked by superficial tissue and muscle inflammation in the rat. Neuroscience, 106(4): 823–831.

    PubMed  CAS  Google Scholar 

  • Hua X, Chen P, Yaksh T. 1999. Inhibition of spinal protein kinase C reduces nerve injury-induced tactile allodynia in neuropathic rats. Neurosci Lett, 276: 99–102.

    PubMed  CAS  Google Scholar 

  • Hurley RW, Hammond DL. 2000. The analgesic effects of supraspinal jll and 8 opioid receptor agonists are potentiated during persistent inflammation. J Neurosci, 20(3): 1249–1259

    PubMed  CAS  Google Scholar 

  • Igwe OJ, Chronwall BM. 2001. Hyperalgesia induced by peripheral inflammation is mediated by protein kinase C βII isozyme in the rat spinal cord. Neuroscience, 104(3): 875–890.

    PubMed  CAS  Google Scholar 

  • Iwamoto ET, Marion L. 1994. Pharmacological evidence that nitric oxide mediates the antinociception produced by muscarinic agonists in the rostral ventral medulla of rats. J Pharmacol Exp Ther, 269(2): 699–708.

    PubMed  CAS  Google Scholar 

  • Jain NK, Patil CS, Singh A, Kulkarni SK. 2001. Sildenafil-induced peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Brain Res, 909(1–2): 170–178.

    PubMed  CAS  Google Scholar 

  • Ji RR, Rupp F. 1997. Phosphorylation of transcription factor CREB in rat spinal cord after formalin induced hyperalgesia: relationship to c-fos induction. J Neurosci, 17(5): 1776–1785.

    PubMed  CAS  Google Scholar 

  • Ji RR, Brenner GJ, Schmoll R, Baba H, Woolf CJ. 2000. Phosphorylation of ERK and CREB in nociceptive neurons after noxious stimulation. Proc. 9th World Congress on Pain, 16: 191–198.

    CAS  Google Scholar 

  • Joseph EK, Levine JD. 2003. Sexual dimorphism in the contribution of protein kinase C isoforms to nociception in the streptozotocin diabetic rat. Neuroscience, 120(4): 907–913.

    PubMed  CAS  Google Scholar 

  • Kawamata T, Omote K. 1999. Activation of spinal N-methyl-D-aspartate receptors stimulates a nitric oxide/cyclic guanosine 3,5-monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology, 91(5): 1415–1424.

    PubMed  CAS  Google Scholar 

  • Khasar SG, Lin Y-H, Martin A, Dadgar J, McMahon T, Wang D, Hundle B, Aley KO, Isenberg W, McCarter G, Green PG, Hodge CW, Levine JD, Messing RO. 1999. A novel nociceptor signaling pathway revealed in protein kinase C 6 mutant mice. Neuron, 24(1): 253–260.

    PubMed  CAS  Google Scholar 

  • Khasar SG, McCarter G, Levin JD. 1999. Epinephrine produces a P-adrenergic receptor mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophys, 81(3):1104–1112.

    CAS  Google Scholar 

  • Kobayashi H, Hashimoto K, Uchida S, Sakuma J, Takami K, Tohyama M, Izumi F, Yoshida H. 1987. Calcitonin gene related peptide stimulates adenylate cyclase activity in rat striated muscle. Experientia, 43: 314–315.

    PubMed  CAS  Google Scholar 

  • Laufer R, Changeux J-P. 1987. Skeletal muscle: possible neurotrophic role for coexisting neuronal messenger. EMBO J, 6: 901–906.

    PubMed  CAS  Google Scholar 

  • Lee J-J, Hahm E-T, Min B-I, Cho Y-W. 2004. Activation of protein kinase C antagonizes the opioid inhibition of calcium current in rat spinal dorsal horn neurons. Brain Research, 1017: 108–119.

    PubMed  CAS  Google Scholar 

  • Levy RA, Proudfit HK, Goldstein BD. 1983. Antinociception following microinjection of dibutyryl cyclic nucleotides into the caudal reticular formation and periaqueductal gray of the rat brain. Pharmacol Biochem Behav, 19(1): 79–84.

    PubMed  CAS  Google Scholar 

  • Li K-C, Zheng J-H, Chen J. 2000. Involvement of spinal protein kinase C in induction and maintenance of both persisitent spontaneous flinching reflex and contralateral heat hyperalgesia induced by subcutaneous bee venom in the conscious rat. Neurosci Lett, 285: 103–106.

    PubMed  CAS  Google Scholar 

  • Lin Q, Wu J, Willis WD. 2002. Effects of protein kinase A activation on the responses of primate spinothalamic tract neurons to mechanical stimuli. J Neurophysiol, 88: 214–221.

    PubMed  CAS  Google Scholar 

  • Lin Q, Peng Y, Willis W. 1996. Possible role of protein kinase C in the sensitization of primate spinothalamic tract neurons. J Neuroscience, 16(9): 3026–3034.

    CAS  Google Scholar 

  • Liu L, Oortgiesen M, Li L, Simon SA. 2001. Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J Physiology, 85: 745–758.

    CAS  Google Scholar 

  • Lopshire JC, Nicol GD. 1998. The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies. J Neurosci, 18(16): 6081–6092.

    PubMed  CAS  Google Scholar 

  • Lynn B, O’Shea NR. 1998. Inhibition of forskolin-induced sensitization of frog skin nociceptors by the cyclic AMP-dependent protein kinase A antagonist H-89. Brain Res, 780: 360–362.

    PubMed  CAS  Google Scholar 

  • Ma W, Quirion R. 2001. Increased phosphorylation of the cyclic AMP response element binding protein (CREB) in the superficial dorsal horn neurons following partial sciatic nerve ligation. Pain, 93: 295–301.

    PubMed  CAS  Google Scholar 

  • Ma W, Hatzis C, Eisenach JC. 2003. Intrathecal injection of cAMP response element binding protein (CREB) antisense oligonucleotide attenuates tactile allodynia caused by partial sciatic nerve ligation. Brain Res, 988: 97–104.

    PubMed  CAS  Google Scholar 

  • Maegawa FA, Tonussi CR. 2003. The L-arginine/ni-tric oxide/cyclic-GMP pathway apparently mediates the peripheral antihyperalgesic action of fentanyl in rats. Braz J Med Biol Res, 36(12): 1701–1707.

    PubMed  CAS  Google Scholar 

  • Malmberg A, Chen C, Tonegawa S, Basbaum A. 1997. Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ. Science, 278: 279–283.

    PubMed  CAS  Google Scholar 

  • Manning DC, Raja SN, Meyer RA, Campbell JN. 1991. Pain and hyperalgesia after intradermal injection of bradykinin in humans. Clin Pharmacol Ther, 50(6): 721–729.

    PubMed  CAS  Google Scholar 

  • Mao J, Mayer D, Hayes R, Price D. 1993. Spinal patterns of increased spinal cord membrane-bound protein kinase C and their relation to increases in 14C-2-deoxyglucose metabolic activity in rats with painful peripheral mono-neuropathy. JNeurophy-siol, 70(2): 469–481

    Google Scholar 

  • Martin W, Malmberg A, Basbaum A. 2001. PKCγ contributes to a subset of the NMDA-dependent spinal circuits that underlie injury-induced persistent pain. J Neuroscience, 21(14): 5321–5327.

    CAS  Google Scholar 

  • Messersmith DJ, Kim DJ, Iadarola MJ. 1998. Transcription factor regulation of prodynorphin gene expression following rat hindpaw inflammation. Mol Brain Res, 53: 259–269.

    CAS  Google Scholar 

  • Miletic G, Pankratz MT, Miletic V. 2002. Increases in the phosphorylation of cyclic AMP response element binding protein (CREB) and decreases in the content of calcineurin accompany thermal hyperalgesia following chronic constriction injury in rats. Pain, 99: 493–500.

    PubMed  CAS  Google Scholar 

  • Miletic V, Bowen K, Miletic G. 2000. Loose ligation of the rat sciatic nerve is accompanied by changes in the subcellular content of protein kinase C beta II and gamma in the spinal dorsal horn. Neurosci Lett, 288: 199–202.

    PubMed  CAS  Google Scholar 

  • Ouseph AK, Khasar SG, Levine JD. 1995. Multiple second messenger systems act sequentially to mediate rolipram-induced prolongation of prostaglandin E2-induced mechanical hyperalgesia in the rat. Neuroscience, 64(3): 769–776.

    PubMed  CAS  Google Scholar 

  • Palecek J, Paleckova V, Willis W 1999. The effect of phorbol esters on spinal cord amino acid concentrations and responsiveness of rats to mechanical and thermal stimuli. Pain, 80: 597–605.

    PubMed  CAS  Google Scholar 

  • Przewlocka B, Dziedzicka M, Lason W, Przewlocki R. 1992. Differential effects of opioid receptor agonists on nociception and cAMP level in the spinal cord of monoarthritic rats. Life Sciences, 50(1): 45–54.

    PubMed  CAS  Google Scholar 

  • Raymond LA, Tingley WG, Blackstone CD, Roche KW, Huganir RL. 1994. Glutamate receptor modulation by protein phosphorylation. J Physiol Paris, 88(3): 181–192.

    PubMed  CAS  Google Scholar 

  • Salter M, Strijbos PJ, Neale S, Duffy C, Follenfant RL, Garthwaite J. 1996. The nitric oxide-cyclic GMP pathway is required for nociceptive signalling at specific loci within the somatosensory pathway. Neuroscience, 73(3): 649–655.

    PubMed  CAS  Google Scholar 

  • Seybold VS, McCarson KE, Mermelstein PG, Groth RD, Abrahams LG. 2003. Calcitonin gene related peptide regulates expression of neurokinin1 receptors by rat spinal neurons. JNeurosci, 23(15): 1816–1824.

    CAS  Google Scholar 

  • Siegan JB, Hama AT, Sagen J. 1996. Alterations in rat spinal cord cGMP by peripheral nerve injury and adrenal medullary transplantation. Neurosci Lett, 215(1): 49–52.

    PubMed  CAS  Google Scholar 

  • Skyba DA, Hoeger-Bement M, Buttjer MD, Hanfelt CR, Lander JR, Stelk CJ, Sluka KA. 2003. Spinal administration of 8-bromo-cAMP produces NMDA receptor-dependent hyperalgesia. Neuroscience Abstract, 383(3)

    Google Scholar 

  • Slack S, Pezet S, McMahon S, Thompson S, Malcangio M. 2004. Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neuroscience, 20: 1769–1778.

    Google Scholar 

  • Sluka KA. 1997. Activation of the cAMP transduction cascade contributes to the mechanical hyperalgesia and allodynia induced by intradermal injection of capsaicin. Br J Pharmacol, 122: 1165–1173.

    PubMed  CAS  Google Scholar 

  • Sluka KA. 2002. Stimulation of deep somatic tissue with capsaicin produces long-lasting mechanical allodynia and heat hypoalgesia that depends on early activation of the cAMP pathway. JNeurosci, 22(13): 5687–5693.

    CAS  Google Scholar 

  • Sluka KA, Rees H, Chen PS, Tsuruoka M, Willis WD. 1997. Inhibitors of G-proteins and protein kinases reduce the sensitization to mechanical stimulation and the desensitization to heat of spinothalamic tract neurons induced by intradermal injection of capsaicin in the primate. Exp Brain Res, 115: 15–24.

    PubMed  CAS  Google Scholar 

  • Sluka KA, Rohlwing JJ, Busley RA, Eikenberry SA, Wilken JM. 2002. Chronic muscle pain induced by repeated acid injection is reversed by spinally administered μ-, and δ-, but not κ-opioid receptor agonists. JPET, 302: 1146–1150.

    CAS  Google Scholar 

  • Sluka KA, Willis WD. 1998. Increased spinal release of excitatory amino acids following intradermal injection of capsaicin is reduced by a protein kinase G inhibitor. Brain Res, 6: 798(1–2): 281–286.

    PubMed  CAS  Google Scholar 

  • Sluka KA, Willis WD. 1997. The effects of G-protein and protein kinase inhibitors on the behavioral responses of rats to intradermal injection of capsaicin. Pain, 71(2): 165–178.

    PubMed  CAS  Google Scholar 

  • Sugiura T, Tominaga M, Katsuya H, Mizumura K. 2002. Bradykinin lowers the threshold temperature for heat activation of vanilloidreceptor 1. J Neurophysiol, 88: 544–548.

    PubMed  CAS  Google Scholar 

  • Sun RQ, Tu YJ, Lawand NB, Yan JY, Lin Q, Willis WD. 2004. Calcitonin gene-related peptide receptor activation produces PKA-and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiology, 92(5): 2859–2866.

    CAS  Google Scholar 

  • Taiwo YO, Levine JD. 1988. Characterization of the arachidonic acid metabolites mediating bradykinin and noradrenaline hyperalgesia. Brain Res, 458(2): 402–406.

    PubMed  CAS  Google Scholar 

  • Tao YX, Hassan A, Haddad E, Johns RA. 2000. Expression and action of cyclic GMP-dependent protein kinase Ialpha in inflammatory hyperalgesia in rat spinal cord. Neuroscience, 95(2): 525–533.

    PubMed  CAS  Google Scholar 

  • Taiwo YO, Bjerknes LK, Goetzl EJ, Levine JD. 1989. Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. J Neurosci, 32(3): 577–580.

    CAS  Google Scholar 

  • Taiwo YO, Levine JD. 1991. Further confirmation of the role of adenyl cyclase and of cAMP dependent protein kinase in primary afferent hyperalgesia. Neuroscience, 441(1): 131–135.

    Google Scholar 

  • Terayama R, Guan Y, Dubner R, Ren K. 2000. Activity-induced plasticity in brain stem pain modulatory circuitry after inflammation. Neuroreport, 11(9): 1915–1919

    PubMed  CAS  Google Scholar 

  • Tomasi V, Biondi C, Trevisani A, Martini M, Perri V. 1977. Modulation of cyclic AMP levels in the bovine superior cervical ganglion by prostaglandin E1 and dopamine. J Neurochem, 28: 1289–1297.

    PubMed  CAS  Google Scholar 

  • Wajima Z, Hua XY, Yaksh TZ. 2000. Inhibition of spinal protein kinase C blocks substance P-mediated hyperalgesia. Brain Res, 887(2): 314–321.

    Google Scholar 

  • Wei F, Qiu CS, Kim SJ, Muglia L, Maas JW, Pineda W, Xu HM, Chen ZF, Storm DR, Muglia LJ, Zhuo M. 2002. Genetic elimination of behavioral sensitization in mice lacking calmodulin stimu-lated adenylyl cyclases. Neuron, 26: 713–726.

    Google Scholar 

  • Wu J, Fang L, Lin Q, Willis WD. 2002. The role of nitric oxide in the phosphorylation of cyclic adenosine monophosphate-responsive element-bi-nding protein in the spinal cord after intradermal injection of capsaicin. J Pain, 3(3): 190–198.

    PubMed  Google Scholar 

  • Yashpal K, Fisher K, Chabot J, Coderre T. 2001. Differential effects of NMDA and group I mGluR antagonists on both nociception and spinal cord protein kinase C translocation in the formalin test and a model of neuropathic pain in rats. Pain, 94: 17–29.

    PubMed  CAS  Google Scholar 

  • Yashpal K, Pitcher GM, Parent A, Quirion R, Coderre TJ. 1995. Noxious thermal and chemical stimulation induce increases in 3H-phorbol 12, 13-dibutyrate binding in spinal cord dorsal horn as well as persistent pain and hyperalgesia, which is reduced by inhibition of protein kinase C. J Neurosci, 15(5 Pt 1): 3263–3672.

    PubMed  CAS  Google Scholar 

  • Zou X, Lin Q, Willis WD. 2000. Enhanced phosphorylation of NMDA receptor 1 subunites in spinal cord dorsal horn and spinothalamic tract neurons after intradermal injection of capsaicin in rats. J Neurosci, 20(18): 6989–6997.

    PubMed  CAS  Google Scholar 

  • Zou X, Lin A, Willis WD. 2002. Role of protein kinase A in phosphorylation of NMDA receptor 1 subunits in dorsal horn and spinothalamic tract neurons after intradermal injection of capsaicin in rats. Neuroscience, 115(3): 775–786.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Higher Education Press

About this chapter

Cite this chapter

Sluka, K.A., Skyba, D.A., Hoeger Bement, M.K., Audette, K.M., Radhakrishnan, R. (2007). Second Messenger Pathways in Pain. In: Zhuo, M. (eds) Molecular Pain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75269-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75269-3_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75268-6

  • Online ISBN: 978-0-387-75269-3

Publish with us

Policies and ethics