Skip to main content

Abstract

In recent years there have been significant advances in microbiology, achieved through the sister sciences of chemistry, molecular biology, and computer aided imaging. These have resulted in a significant increase in the methods available for the detection, enumeration, and identification of microorganisms in the laboratory. This chapter provides a brief overview of the types of technologies available and the premise of how they work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acolyte Biomedica Product Literature. Accessed at www.acolytebiomedica.com (downloaded 27 Sep 2007)

    Google Scholar 

  • AATI Micro PRO Product Literature. Accessed at http://www.aati-us.com/systems/rbd3000.html (downloaded 10 July 2007)

    Google Scholar 

  • AATI Oligo PRO Product Literature. http://www.aati-us.com/systems/oligo.html (downloaded 10 July 2007)

    Google Scholar 

  • AES Product Literature. http://www.aeschemunex.com/Pages/rapidintro.htm (27 Sep 2007)

    Google Scholar 

  • Aldridge C et al. (1977) Automated microbiological detection/identification system. J Clin Microbiol. 6 (4): 406–413

    Google Scholar 

  • Anon. (January 2005) Clinical Microbiological Reviews p 147–162

    Google Scholar 

  • Anon. Tools for microbiology. Bioprobes 43:11–13 www.probes.com (downloaded 15 Dec 2006)

    Google Scholar 

  • Aubin JE (1979) Autofluorescence of viable cultured mammalian cells. J. Histochem Cytochem. 27:36–43

    Google Scholar 

  • Benson RC, Meyer RA, Zaruba ME and McKhann GM (1979) Cellular autofluorescence—is it due to flavins? J Histochem Cytochem 27:44–48

    Google Scholar 

  • Billinton N and Knight AW (2000) Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem. 291:175–197

    Article  Google Scholar 

  • bioMerieux and VIDAS Product Literature. www.biomerieux-industry.com/servlet/srt/bio/industry-microbiology/ dynPage?node=biopharma_applications (downloaded on 15 Sep 2007)

    Google Scholar 

  • Bolotin C (December 2005) Instantaneous Microbial Detection. Controlled Environments Magazine® (Electronic) http://www.cemag.us/articles.asp?pid=564 (downloaded on 27 Sep 2007)

    Google Scholar 

  • Biotrace (Division of 3M) Product Literature and Brochure. www.biotrace.co.uk/content.php?hID=5 (downloaded on 15 Sep 2007)

    Google Scholar 

  • Brown B and Leff L (1996) Comparison of fatty acid methyl ester analysis with the use of API 20E and NFT strips for identification of aquatic bacteria. Appl Environ Microbiol. 62(6):2183–2185

    Google Scholar 

  • Bruch CW (1972) Objectionable microorganisms in nonsterile drugs and cosmetics. Drug Cosmet Ind. 11:51

    Google Scholar 

  • Busit E, Bordoni R, Castiglioni B, Monciardini P, Sosio M, Donadio S, Consolandi C, Bernardi LR, Battaglia C and De Bellis G (2002) Bacterial discrimination by means of a universal array approach mediated by LDR (ligase detection reaction). BMC Microbiology. 2:27(www.biomedcentral.com/1471–2180/2/27)

    Article  Google Scholar 

  • Bussey DM and Tsuji K (1986) Bioluminescence for USP sterility testing of pharmaceutical suspension products. Appl Environ Microbiol. 51:349–355

    Google Scholar 

  • Cangelosi GA (2004) Evaluation of a high-throughput tepetitive-sequence-based PCR System for DNA fingerprinting of Mycobacterium tuberculosis and Mycobacterium avium complex strains. J Clin Microbiol. 42(6):2685–2693

    Article  Google Scholar 

  • Caplin BC, Rasmussen RP, Bernard PS, Wittwer CT (1999) Light Cycler Hybridization Probes. Biochemica No.1, p 5–8

    Google Scholar 

  • Celsis (2005) Fact Sheet 003 Limit of Detection of Celsis AKuScreen, FS047–2. www.celsis.com, (downloaded 9 July 2007)

    Google Scholar 

  • Charles Rivers Laboratories Product Literature. http://www.criver.com/endotoxin_and_rapid_microbiological_ products/literature.html. (downloaded on 15 Sep 2006)

    Google Scholar 

  • Chau AS, et al. (2004) Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother. 48(6):2124–2131

    Article  MathSciNet  Google Scholar 

  • Chizhikov V, Rasooly A, Chumakov K and Levy DD (July 2001) Microarray analysis of microbial virulence factors. 67(7):3258–3263

    Google Scholar 

  • Cloud JL, et al. (2004) Evaluation of partial 16S ribosomal DNA sequencing for identification of nocardia species by using the MicroSeq 500 system with an expanded database. J Clin Microbiol. 42(2):578–584

    Article  Google Scholar 

  • Corkidi G, Trejo M and Nieto-Sotelo J (2003) Automated colony counting using image-processing techniques, In: Olson WP and Godalming (eds) Rapid Analytical Microbiology: The Chemistry and Physics of Microbial Identification Parenteral Drug Association and Davis Horwood International Publishing, Bethesda, MD and Surrey, UK.

    Google Scholar 

  • Craythorn J, et al. (1980) Membrane filter contact technique for bacteriological sampling of moist surfaces. J Clin Microbiol. 12(2):250–255

    Google Scholar 

  • Dalmasso G (April 2007) Presentation Implementation and validation of the laser scanning cytometry for the control of sterile products”. A.I.M.I.F. Conference, San Malo, France

    Google Scholar 

  • Dare D (2005) Microbial identification using Maldi-TOF MS. In: Miller MJ (ed) Encyclopedia of Rapid Microbiological Methods, vol. 3. PDA/DHI Publishers, Bethesda, MD, pp 19–56

    Google Scholar 

  • Dare D, et al. (2005) ASMS Poster Presentation. Fast Reliable Identification of Staphylococcus haemolytica by Matrix Assisted laser Desorption / Ionisation Time of Flight Mass Spectrometry

    Google Scholar 

  • Davidson CA (1999) Evaluation of two methods for monitoring surface cleanliness-ATP bioluminescence and traditional hygiene swabbing. Luminescence 14:33–38

    Article  Google Scholar 

  • DeSorbo MA (1 Aug 2002) Rapid Contamination Detection Technology Patent Granted. http://cr.pennet.com/display-article/150543/15/ARTCL/none/none/1 (downloaded on 13 Jan 2008)

    Google Scholar 

  • Duchaine C, et al. (2001) Comparison of endotoxin exposure assessment by Bioaerosol Impinger and filter sampling methods. Appl Environ Microbiol. 67(6):2775–2780

    Article  Google Scholar 

  • Ecker DJ, et al. (May 31, 2005) Rapid identification and strain typing of respiratory pathogens for epidemiological surveillance. PNAS 102(2):8012–8017

    Google Scholar 

  • EMEA (1997a) Note for guidance on validation of analytical procedures: definitions and terminology. CPMP/ICH/381/95

    Google Scholar 

  • EMEA (1997b) Note for guidance on validation of analytical procedures: methodology. CPMP/ICH/281/95

    Google Scholar 

  • Emrich T (2000a) Detection of telomerase components by quantitative real time PCR online PCR analysis with the Light Cycler Biochemica. 4:16–19

    Google Scholar 

  • Emrich T (2000b) The Light Cycler Instrument and MagNA Pure LC: An automated system for the evaluation of telomerase expression by quantitative RT-PCR. Biochem. 4:10–13

    Google Scholar 

  • FDA (January 2001) Bacteriological analytical manual online. www.cfsan.fda.gov/∼ebam/bam-toc.html (downloaded on 22 Jul 2006)

    Google Scholar 

  • FDA (February 2003) Guidance for industry: comparability protocols—chemistry, manufacturing, and controls information. http://www.fda.gov/cber/gdlns/cmprprot.pdf

    Google Scholar 

  • FDA (August 2003) Part 11: Electronic records, electronic signatures—scope and application. http://www.fda.gov/cder/guidance/5667fnl.htm

    Google Scholar 

  • FDA (September 2004a) Guidance for industry: sterile drug products produced by aseptic processing—current good manufacturing practice. Department of Health and Human Services. U.S. Food and Drug Administration, Washington, D.C.

    Google Scholar 

  • FDA (2004b) Guidance for industry—PAT a framework for innovative pharmaceutical development, manufacture and quality assurance. Department of Health and Human Services. U.S. Food and Drug Administration, Washington, D.C.

    Google Scholar 

  • FDA (September 2004c) Pharmaceutical cGMPs for the 21 st Century—A Risk-Based Approach. Department of Health and Human Services. U.S. Food and Drug Administration, Washington, D.C.

    Google Scholar 

  • Funke G and Funke-Kissling P (2004) Evaluation of the new VITEK 2 card for identification of clinically relevant Gram-negative rods. J Clin Microbiol. 42(9):4067–4071

    Article  Google Scholar 

  • Funke G and Funke-Kissling P (2005) Performance of the new VITEK 2 GP card for identification of medically relevant Gram-positive cocci in a routine clinical laboratory. J Clin Microbiol. 43(1):84–88

    Article  Google Scholar 

  • Gilchrist JE, et al. (1973) Spiral plate method for bacterial determination. Appl Microbiol. 25(2):244–252

    Google Scholar 

  • Gordon and Watson (1994) A note on sample size determination for comparison of small probabilities. Controlled Clinical Trials. 15:77–79

    Google Scholar 

  • Gressett G (April 2007) Presentation. FDA Approval of an Alternative Sterility Test Method for a Sterile Ophthalmic Product. A.I.M.I.F.Conference, San Malo, France

    Google Scholar 

  • Hall L, et al. (2003). Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of commonly encountered, clinically important yeast species. J Clin Microbiol. 41(11):5099–5102

    Article  Google Scholar 

  • Hall L, et al. (2003b) Evaluation of the MicroSeq System for Identification of Mycobacteria by 16S ribosomal DNA sequencing and its integration Into a routine clinical Mycobacteriology laboratory. J Clin Microbiol. 41(4):1447–1453

    Article  Google Scholar 

  • Hall L, et al. (2004) Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J Clin Microbiol. (2):622–626

    Google Scholar 

  • Hawkins K, (2005) The RBD 3000. Presentation at IVT Microbiology Event of the Year. Arlington, VA.

    Google Scholar 

  • Healy M, et al. (2004) Identification to the species level and differentiation between strains of Aspergillus clinical isolates by automated repetitive-sequence-based PCR. J Clin Microbiol. 42(9):4016–4024

    Article  Google Scholar 

  • Heikens E, et al. (2005) Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative Staphylococci. J Clin Microbiol. 43(5):2286–2290

    Article  Google Scholar 

  • Hygiena Product Literature and Brochure, including SystemSURE^II and UltraSnap. www.hygiena.net (downloaded on 8 Feb 2007)

    Google Scholar 

  • Jiang JP (2005) Instantaneous Microbial Detection Using Optical Spectroscopy. Pp. 121—142. In: Miller MJ (ed) Encyclopedia of Rapid Microbiological Methods, vol. 3. PDA/DHI Publishers, Bethesda, MD

    Google Scholar 

  • Jimenez L (2001) Rapid methods for the microbiological surveillance of pharmaceuticals. PDA J Pharm Sci Tech. 55(5):278–285

    Google Scholar 

  • Jimenez L, et al. (2000) Use of PCR analysis for sterility testing in pharmaceutical environments. J Rapid Method & Automation In Microbiol. 8:11–20

    Article  Google Scholar 

  • Juozaitis A, et al. (1994) Impaction onto a glass slide or agar vs impingement into a liquid for the collection and recovery of airborne microorganisms. Appl Environ Microbiol. 60(3):861–870

    Google Scholar 

  • Känsäkoski M, Kurkinen M, von Weymarn N, Niemelä P, Neubauer P, Juuso E, Erikäinen T, Turunen S, Aho S and Suhonen P ESPOO (2006) Process analytical technology (PAT) needs and applications in the bioprocess industry: a review. (http://www.vtt.f.i/publications/index.jsp)

    Google Scholar 

  • Kricka LJ (2003) New technologies for microbiological assays. In: Easter MC (ed) Rapid Microbiological Methods in the Pharmaceutical Industry. Interpharm/CRC, Washington, D.C., pp 233–248

    Google Scholar 

  • Lonza PowerPoint Presentation. http://www.lonzabioscience.com/Content/LAL.asp (Note: during the writing of this chapter, the Cambrex systems were purchased by Lonza)

    Google Scholar 

  • Lupski JR and GM Weinstock (1992) Short, interspersed repetitive DNA sequences in prokaryotic genomes. J Bacteriol. 174(14):4525–4529

    Google Scholar 

  • Manu-Tawiah W, et al. (2001) Setting Threshold Limits for the Significance of Objectionable Microorganisms In Oral Pharmaceutical Products. PDA J Pharm Sci Tech. 55(3):171–175

    Google Scholar 

  • Mason DJ, et al. (1998) A fluorescent Gram stain for flow cytometry and epifluorescence Microscopy. Appl Environ Microbiol. 64(7):2681–2685

    Google Scholar 

  • McDaniel A (April 2007) Solid phase cytometry for detection of bacterial contamination in mammalian cells culture systems. A.I.M.I.F Conference Presentation, San Malo, France

    Google Scholar 

  • Meszaros A (2003) Alternative technologies for sterility testing. In: Easter MC (ed) Rapid Microbiological Methods in the Pharmaceutical Industry.. Interpharm/CRC, Washington, D.C., pp 179–185

    Google Scholar 

  • Miller MJ (2006) Rapid microbiological methods for a new generation. www.pharmamanufacturing.com/articles/ 2006/019.htmo?page=print (downloaded on 8 Sep 2007)

    Google Scholar 

  • Minkel JR (August 1, 2005) Tiger catches pathogens by the toe. The Scientist 19(15):31.

    Google Scholar 

  • Moldenhauer J (2002) Feasibility of ScanRDI for Biological Indicators. Barnette International Conference Presentation, Caribe Hilton, Puerto Rico

    Google Scholar 

  • Moldenhauer J (September 2005) Rapid microbiological methods and PAT initiative. Guide to Biopharmaceutical Advances: The Biopharm International Guide Supplement. Advanstar 11–20

    Google Scholar 

  • Moldenhauer J and Sutton SVW (2004) Towards an improved sterility test. PDA J Pharm Sci Tech. 58(6):284–286

    Google Scholar 

  • Moldenhauer J and Yvon P (2005) Environmental monitoring using Scan RDI Polym’air. In: Moldenhauer, J (ed) Environmental Monitoring: A Comprehensive Handbook. PDA/DHI, River Grove, IL and Bethesda, MD, pp 249–260

    Google Scholar 

  • Neogen Product Literature and Solaris Brochure. http://www.neogen.com (Downloaded on 10 Sep 2007)

    Google Scholar 

  • Newby PJ and Johnson B (2003) Overview of alternative rapid microbiological technologies. In: Easter MC (ed) Interpharm/CRC, Washington, D.C., pp 41–60.

    Google Scholar 

  • Newby P, et al. (2004) The introduction of qualitative rapid microbiological methods for drug-product testing. Pharm Technol. (PAT Supplemental Issue) p 6–12

    Google Scholar 

  • Niskanen A and Pohja MS (1977) Comparative studies on the sampling and investigation of microbial contamination of surfaces by the contact plate and swab methods. J Appl Bacteriol. 42:53–63

    Google Scholar 

  • Noppen C, Martinato I, Reischl U and Schaefer C (2001) High speed purification and detection of Bordetela pertussus: A straight forward application for MagNA pure LC and the Light Cycler System in microbiological research. Biochemica. 1:17–19

    Google Scholar 

  • Novitsky TJ and Hochstein HD (2003) Limulus Endotoxin Test. In: Easter MC (ed) Rapid Microbiological Methods in the Pharmaceutical Industry. Interpharm/CRC, Washington, D.C., pp. 187–210

    Google Scholar 

  • Odlaug TE, et al. (1982) Evaluation of an automated system for rapid identification of Bacillus biological indicators and other Bacillus Species. PDA J Parenteral Sci Tech. 36(2):47–54

    Google Scholar 

  • Olive DM and Bean P (1999) Principles and applications for DNA-Based typing of microbial organisms. J Clin Microbiol. 37(6):1661–1669

    Google Scholar 

  • PallCheck Product Literature and Brochure. www.pall.com/datasheet_biopharm_38304.asp (Downloaded on 5 June 2007)

    Google Scholar 

  • Parenteral Drug Association (May/June 2000) Technical Report 33: Evaluation, validation and implementation of new microbiological testing methods. J. Pharm. Sci. Technol. 54(3), Suppl. TR33

    Google Scholar 

  • Patel JB, et al. (2000) Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA Bacterial Identification System. J Clin Microbiol. 38(1):246–251

    Google Scholar 

  • Pathogen Detection Systems Product Literature www.pathogendetect.com/ (Downloaded on 1 Sep 2007)

    Google Scholar 

  • PHARMEUROPA (October 2004) 5.1.6.: Alternative methods for control of microbiological quality. PHARMEUROPA 16(4) pp 555–565 (Note: Subsequently finalized July 2006)

    Google Scholar 

  • Poletti L (1999) Comparative efficiency of nitrocellulose membranes vs. RODAC plates. In Microbial Sampling on Surfaces. J Hosp Infect. 41:195–201

    Article  Google Scholar 

  • Pounder JI, et al. (2005) Repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab System for identification of commonly encountered Dermatophytes. J Clin Microbiol. 43(5):2141–2147

    Article  Google Scholar 

  • Powers EM (1995) Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol. 61(10):3756–3758

    Google Scholar 

  • Prigione V, et al. (2004) Development and use of flow cytometry for detection of airborne fungi. Appl Environ Microbiol. 70(3):1360–1365

    Article  Google Scholar 

  • Prinzi S (January 21–23, 2007) Cutting edge technology for the future of quality control using BacT/ALERT automated microbial detection system. Presentation at RMUG, Arlington VA

    Google Scholar 

  • Rosen DL, Fell Jr NF and Pellegrino PM (2003) Spectroscopic detection of bacterial endospores using terbium cation reagent. In: Olson WP (ed) Rapid Analytical Microbiology: The Chemistry and Physics of Microbial Identification. edParenteral Drug Association and Davis Horwood International Publishing, Ltd., Bethesda, MD and Godalming Surrey, UK, pp 230–235

    Google Scholar 

  • Rudi K (2003) Application of nucleic acid probes for analyses of microbial communities. In: Olson WP (ed) Rapid Analytical Microbiology: The Chemistry and Physics of Microbial Identification Parenteral Drug Association and Davis Horwood International Publishing, Ltd., Bethesda, MD and Godalming Surrey, UK, pp 13–40

    Google Scholar 

  • Schalkowsky S (1996) Predictive antimicrobial preservative effectiveness testing. Pharm Forum. 22(4):2690–2695

    Google Scholar 

  • Shah HN et al. (2005). Surface enhanced laser desorption/ionisation time of flight mass spectrometry (Seldi-TOF-MS): A potentially powerful tool for rapid characterisation of microorganisms. In: Miller MJ (ed) Encyclopedia of Rapid Microbiological Methods, vol 3. PDA/DHI Publishers, Bethesda MD, pp 57–95

    Google Scholar 

  • Shutt CK, et al. (2005) Clinical evaluation of the DiversiLab microbial typing system using repetitive-sequence-based PCR for characterization of Staphylococcus aureus strains. J Clin Microbiol. 43(3):1187–1192

    Article  Google Scholar 

  • Silley P and Sharpe AN (2003) Labor saving devices and automation of traditional methods,. In: Easter MC (ed) Rapid Microbiological Methods in the Pharmaceutical Industry. Interpharm/CRC, Washington D.C., pp 61–72

    Google Scholar 

  • Singer DC and Cundell AM (2003) The role of rapid microbiological methods within the process analytical technology initiative. Pharmacopeial Forum. 29(6):2109–2113

    Google Scholar 

  • Straus D (January 21–23, 2007) The Growth Direct System—A rapid non-destructive method for microbial enumeration. Presentation at RMUG, Crystal City, Virginia

    Google Scholar 

  • Straus D (Sep 2007) Chief Science Office. Rapid Micro Biosystems. Personnel Communication.

    Google Scholar 

  • Sutton SVW and AM Cundell (2004) Microbial identification in the pharmaceutical industry. Pharm Forum. 30(5):1884–1894

    Google Scholar 

  • Sutton SVW (2005) Validation of alternative microbiology methods for product testing: quantitative and qualitative assays. Pharm Technol. 29(4):118–122

    MathSciNet  Google Scholar 

  • Sy-Lab Product Literature. www.sylab.com/# (Downloaded on 1 Oct 2006)

    Google Scholar 

  • Tang S (1998) Microbial limits reviewed: the basis for unique Australian regulatory requirements for microbial quality of non-sterile pharmaceuticals. PDA J Pharm Sci Tech. 52(3):100–109

    Google Scholar 

  • Trinel PA, et al. (1983) Automatic diluter for bacteriological samples. Appl Environ Microbiol. 45(2):451–455

    Google Scholar 

  • USP 27 <1223>.

    Google Scholar 

  • Vaidyanathan S, et al. (2001) Assessment of near-infrared spectral information for rapid monitoring of bioprocess quality. Biotechnology and Bioengineering 74(5):376–388

    Article  Google Scholar 

  • Versalovic J, et al. (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nuc Acids Res. 19(24):6823–6831

    Article  Google Scholar 

  • Warnex Product Literature and Brochures. www.warnex.ca/en/index.php (Downloaded on 7 July 2007)

    Google Scholar 

  • Waterhouse RN and Glover LA (1993) Identification of procaryotic repetitive DNA suitable for use as fingerprinting probes. Appl Environ Microbiol. 59(5):1391–1397

    Google Scholar 

  • Waters Literature and Article in Galley Proof form. www.waters.com/watersdivision/Contentd.asp?ref=CEAN-5KUSS8 (Downloaded on 1 July 2007)

    Google Scholar 

  • Westin L, Miller C, Vollmer D, Canter D, Radtkey R, Nerenberg M and O’Connell JP (March 2001) Antimicrobial resistance and bacterial identification utilizing a microelectronic chip array. Journal of Clinical Microbiology 39 (3):1097–1104

    Google Scholar 

  • Will K (2003) ATP bioluminescence and its use in pharmaceutical microbiology. In: Easter MC (ed) Rapid Microbiological Methods in the Pharmaceutical Industry. Interpharm/CRC, Washington, D.C., pp 88–98

    Google Scholar 

  • Woo PCY, et al. (2003) Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol. 41(5):1996–2001

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moldenhauer, J. (2008). Overview of Rapid Microbiological Methods. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics