Skip to main content

Abstract

Protein–carbohydrate interactions are involved in a wide variety of cellular recognition processes including cell growth regulation, differentiation, adhesion, cancer cell metastasis, cellular trafficking, the immune response, and viral or bacterial infections. These specific interactions occur through glycoproteins, glycolipids, polysaccharides found on cell surfaces, and proteins with carbohydrate-binding domains called lectins through cooperative multiple interactions since it is known that individual carbohydrate–protein interactions are generally weak. A common way for bacteria to accomplish adhesion is through their cellular lectins, also called fimbriae or pili, which bind to complementary carbohydrates on the surface of the host tissues. Lectin-deficient mutant bacteria often fail to initiate infection. Carbohydrate-based detection of bacterial pathogens presents an exciting alternative to standard methods for screening and detecting bacterial targets in food industry, water and environment quality control, and clinical diagnosis. Conjugated fluorescent glycopolymers such as conjugated glycopoly(p-phenylene-ethynylene)s, glycopolythiophenes, glycopoly(p-phenylene)s, and carbohydrate-bearing polydiacetylenes have been prepared for quick detection of Escherichia coli (E. coli) through cooperative multivalent interactions between the polymeric carbohydrates and the bacterial pili because they combine fluorescent scaffolding and carbohydrate reporting functions into one package and possess intrinsic fluorescence and high sensitivity to minor external stimuli. Glyconanoparticles and galactose-functionalized carbon nanotubes (Gal-SWNTs) have been used as three-dimensional systems to study their specific multivalent interactions with E. coli. In addition, Gal-SWNTs have also been employed to detect Bacillus anthracis spores through divalent cation-mediated multivalent carbohydrate–carbohydrate interactions. Carbohydrate microarrays combine the benefits of immobilized format assays with the capability of detecting thousands of analytes simultaneously and can offer a general and powerful platform for whole-cell applications because their multivalent display of carbohydrates can mimic multivalent interactions at cell–cell interfaces. A simple but very effective diagnostic carbohydrate microarray has been reported for the quick detection of E. coli in complex biological mixtures with detection limit of 105–106 cells. Wang et al. reported another direct and unique approach to detect pathogenic bacteria by using a carbohydrate microarray of 48 carbohydrate-containing antigenic macromolecules for recognition of carbohydrate-binding antibodies from 20 human serum specimens.

Pathogenic bacteria possess a cell surface capsular polysaccharide (CPS) or lipopolysaccharide (LPS) shell, or both, which helps the pathogen initiate an infection. Lectin microarrays have been utilized as a very important and powerful tool to detect E. coli, profile diverse glycan structures of E. coli and discover dynamic changes in surface glycosylation of bacteria in response to environmental stimuli through specific multivalent interactions of lectins and the bacterial LPSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 2006 North American E. coli outbreak (2006). U.S.FDA News, October 6

    Google Scholar 

  • Ada G and Isaacs D (2003) Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect 9:79–85

    Google Scholar 

  • Akamatsu K, Tsuruoka T and Nawafune H (2005) Band gap engineering of CdTe nanocrystals through chemical surface modification. J Am Chem Soc 127:1634–1635

    Google Scholar 

  • Alexander C and Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endoxtin Res 7:167–202

    Google Scholar 

  • Angenendt P (2005) Progress in protein and antibody microarray technology. Drug Discov Today 10:503–511

    Google Scholar 

  • Appeldoorn CCM, Joosten JAF, el Maate FA, Dobrindt U, Hacker J, Liskamp RMJ, Khan AS and Pieters, RJ (2005) Novel multivalent mannose compounds and their inhibition of the adhesion of type 1 fimbriated uropathogenic E. coli. Tetrahedron-Asymmetr 16:361–372

    Google Scholar 

  • Backhed F, Alsen B, Roche N, Angstrom J, von Euler A, Breimer ME, Westerlund-Wikstrom B, Teneberg S and Richter-Dahlfors A (2002) Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J Biol Chem 277:18198–18205

    Google Scholar 

  • Baek MG, Stevens RC and Charych DH (2000) Design and synthesis of novel glycopolythiophene assemblies for colorimetric detection of influenza virus and E-coli. Bioconjug Chem 11:777–788

    Google Scholar 

  • Banemann A, Deppisch H and Gross R (1998) The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect Immun 66:5607–5612

    Google Scholar 

  • Barasch A, Gordon S, Geist RY and Geist JR (2003) Necrotizing stomatitis: Report of 3 Pseudomonas aeruginosa-positive patients. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics 96:136–140

    Google Scholar 

  • Barthelson R, Mobasseri A, Zopf D and Simon P (1998) Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides. Infect Immun 66:1439–1444

    Google Scholar 

  • Berenson CS, Sayles KB, Huang J, Reinhold VN, Garlipp MA and Yohe HC (2005) Nontypeable Haemophilus influenzae-binding gangliosides of human respiratory (HEp-2) cells have a requisite lacto/neolacto core structure. FEMS Immunol Med Microbiol 45:171–182

    Google Scholar 

  • Beuth J, Ko HL, Tunggal L and Pulverer G (1992) Urinary-Tract Infection Caused by Staphylococcus Saprophyticus - Increased Incidence Depending on Blood-Group. Dtsch Med Wochenschr 117:687–691

    Google Scholar 

  • Bouckaert J, Mackenzie J, de Paz JL, Chipwaza B, Choudhury D, Zavialov A, Mannerstedt K, Anderson J, Pierard D, Wyns L et al. (2006) The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol Microbiol 61:1556–1568

    Google Scholar 

  • Brooks BW, Devenish J, Lutze-Wallace CL, Milnes D, Robertson RH and Berlie-Surujballi G (2004) Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples. Vet Microbiol 103:77–84

    Google Scholar 

  • Bryan MC, Fazio F, Lee HK, Huang CY, Chang A, Best MD, Calarese DA, Blixt C, Paulson JC, Burton D et al. (2004) Covalent display of oligosaccharide arrays in microtiter plates. J Am Chem Soc 126:8640–8641

    Google Scholar 

  • Bunz UHF (2000) Poly(aryleneethynylene)s: Syntheses, properties, structures, and applications. Chem Rev 100: 1605–1644

    Google Scholar 

  • Campbell CT and Yarema KJ (2005) Large-scale approaches for glycobiology. Genome Biol 6:236.1–236.8

    Google Scholar 

  • Carlsson J, Mecklenburg M, Lundstrom I, Danielsson B and Winquist F (2005) Investigation of sera from various species by using lectin affinity arrays and scanning ellipsometry. Anal Chim Acta 530:167–171

    Google Scholar 

  • Caroff M and Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338:2431–2447

    Google Scholar 

  • Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh M, Nagy JO, Spevak W and Stevens RC (1996) A ‘litmus test’ for molecular recognition using artficial membranes. Chem Biol 3:113–120

    Google Scholar 

  • Charych DH, Nagy JO, Spevak W and Bednarski MD (1993) Direct Colorimetric Detection of a Receptor-Ligand Interaction by a Polymerized Bilayer Assembly. Science 261:585–588

    Google Scholar 

  • Chen JR, Miao YQ, He NY, Wu XH and Li SJ (2004) Nanotechnology and biosensors. Biotechnology Advances 22:505–518

    Google Scholar 

  • Chen YF, Ji TH and Rosenzweig Z (2003) Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots. Nano Letters 3:581–584

    Google Scholar 

  • Cobb BA and Kasper DL (2005). Zwitterionic capsular polysaccharides: the new MHCII-dependent antigens. Cellular Microbiology 7:1398–1403

    Google Scholar 

  • Comstock LE and Kasper DL (2006) Bacterial glycans: Key mediators of diverse host immune responses. Cell 126:847–850

    Google Scholar 

  • Connell H, Agace W, Klemm P, Schembri M, Marild S and Svanborg C (1996) Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proceedings of the National Academy of Sciences 93:9827–9832

    Google Scholar 

  • Cross AS (1990) The Biologic Significance of Bacterial Encapsulation. Curr Top Microbiol Immunol 150:87–95

    Google Scholar 

  • Culf AS, Cuperlovic-Culf M and Ouellette RJ (2006) Carbohydrate microarrays: Survey of fabrication techniques. Omics 10:289–310

    Google Scholar 

  • Dando M (1994) Biological Warfare in the 21st Century: Biotechnology and the Proliferation of Biological Weapons, 1st ed. Brassey’s UK Ltd, London

    Google Scholar 

  • Daniel MC and Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Google Scholar 

  • de la Fuente JM, Eaton P, Barrientos AG, Menendez M and Penades S (2005) Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. J Am Chem Soc 127:6192–6197

    Google Scholar 

  • de la Fuente JM and Penades S (2004) Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology. Glycoconj J 21:149–163

    Google Scholar 

  • de Paz JL and Seeberger PH (2006) Recent advances in carbohydrate microarrays. Qsar & Combinatorial Science 25:1027–1032

    Google Scholar 

  • Diks SH, van Deventer SJH and Peppelenbosch MP (2001) Lipopolysaccharide recognition, internalisation, signalling and other cellular effects. J Endoxtin Res 7:335–348

    Google Scholar 

  • Disney MD and Seeberger PH (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 11:1701–1707

    Google Scholar 

  • Disney MD, Zheng J, Swager TM and Seeberger PH (2004) Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc 126:13343–13346

    Google Scholar 

  • Doyl MP, Beuchat LR and Montville TJ (2001) Food Microbiology: Fundamentals and Frontiers, 2nd ed, ASM Press, Washington, D.C.

    Google Scholar 

  • Duncan MJ, Mann EL, Cohen MS, Ofek I, Sharon N and Abraham SN (2005) The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 280:37707–37716

    Google Scholar 

  • Dyukova VI, Shilova NV, Galanina OE, Rubina AY and Bovin NV (2006) Design of carbohydrate multiarrays. Biochimica Et Biophysica Acta-General Subjects 1760:603–609

    Google Scholar 

  • Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, Narimatsu H and Hirabayashi J (2006) Application of lectin microarray to crude samples: Differential glycan profiling of Lec mutants. J Biochem (Tokyo) 139:323–327

    Google Scholar 

  • Erridge C, Bennett-Guerrero E and Poxton IR (2002) Structure and function of lipopolysaccharides. Microbes Infect 4:837–851

    Google Scholar 

  • Ertl P and Mikkelsen SR (2001) Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal Chem 73:4241–4248

    Google Scholar 

  • Ertl P, Wagner M, Corton E and Mikkelsen SR (2003) Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosens Bioelectron 18:907–916

    Google Scholar 

  • Evans DG, Evans DJ, Clegg S and Pauley JA (1979) Purification and Characterization of the Cfa-I Antigen of Enterotoxigenic Escherichia-Coli. Infect Immun 25:738–748

    Google Scholar 

  • Faris A, Lindahl M and Wadstrom T (1980) Gm2-Like Glycoconjugate as Possible Erythrocyte Receptor for the Cfa-I and K-99 Hemagglutinins of Entero-Toxigenic Escherichia-Coli. FEMS Microbiol Lett 7:265–269

    Google Scholar 

  • Feizi T, Fazio F, Chai WC and Wong CH (2003) Carbohydrate microarrays - a new set of technologies at the frontiers of glycomics. Curr Opin Struct Biol 13:637–645

    Google Scholar 

  • Ficko-Blean, E., and Boraston, A. B. (2006). The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J Biol Chem 281, 37748–37757.

    Google Scholar 

  • Firon N, Ashkenazi S, Mirelman D, Ofek I and Sharon N (1987) Aromatic Alpha-Glycosides of Mannose Are Powerful Inhibitors of the Adherence of Type-1 Fimbriated Escherichia-Coli to Yeast and Intestinal Epithelial-Cells. Infect Immun 55:472–476

    Google Scholar 

  • Fredriksson-Ahomaa M, Stolle A and Korkeala H (2006) Molecular epidemiology of Yersinia enterocolitica infections. FEMS Immunol Med Microbiol 47:315–329

    Google Scholar 

  • Fukui S, Feizi T, Galustian C, Lawson AM and Chai WG (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20:1011–1017

    Google Scholar 

  • Galanos C and Freudenberg MA (1993) Bacterial-Endotoxins - Biological Properties and Mechanisms of Action. Mediators Inflamm 2:S11–S16

    Google Scholar 

  • Gillespie SH (1998) New polymerase chain reaction-based diagnostic techniques for bacterial respiratory infection. Curr Opin Infect Dis 11:133–138

    Google Scholar 

  • Gilsdorf JR, McCrea KW and Marrs CF (1997) Role of pili in Haemophilus influenzae adherence and colonization. Infect Immun 65:2997–3002

    Google Scholar 

  • Greenberg AE (1995) Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Gu LR, Elkin T, Jiang XP, Li HP, Lin Y, Qu LW, Tzeng TRJ, Joseph R and Sun YP (2005) Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem Commun. 874–876

    Google Scholar 

  • Gustafsson, A., Hultberg, A., Sjostrom, R., Kacskovics, I., Breimer, M. E., Boren, T., Hammarstrom, L., and Holgersson, J. (2006). Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glycobiology 16, 1–10.

    Google Scholar 

  • Hanisch FG, Hacker J and Schroten H (1993) Specificity of S-Fimbriae on Recombinant Escherichia-Coli - Preferential Binding to Gangliosides Expressing Neugc-Alpha(2-3)Gal and Neuac-Alpha(2-8)Neuac. Infect Immun 61: 2108–2115

    Google Scholar 

  • Hanson S, Best M, Bryan MC and Wong CH (2004) Chemoenzymatic synthesis of oligosaccharides and glycoproteins. Trends Biochem Sci 29:656–663

    Google Scholar 

  • Hansson J and Oscarson S (2000) Complex bacterial carbohydrate surface antigen structures: Syntheses of Kdo- and heptose-containing lipopolysaccharide core structures and anomerically phosphodiester-linked oligosaccharide structures. Current Organic Chemistry 4:535–564

    Google Scholar 

  • Hill WE (1996) The polymerase chain reaction: Applications for the detection of foodborne pathogens. Crit Rev Food Sci Nutr 36:123–173

    Google Scholar 

  • Hirabayashi J (2003) Oligosaccharide microarrays for glycomics. Trends Biotechnol 21:141–143

    Google Scholar 

  • Hobson NS, Tothill I and Turner APF (1996) Microbial detection. Biosens Bioelectron 11:455–477

    Google Scholar 

  • Houseman BT and Mrksich M (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem Biol 9:443–454

    Google Scholar 

  • Houseman BT, Gawalt ES and Mrksich M (2003) Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 19:1522–1531

    Google Scholar 

  • Hsu KL, Pilobello KT and Mahal LK (2006) Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2:153–157

    Google Scholar 

  • Ikeda M, Yamaguchi N, Tani K and Nasu M (2006) Rapid and simple detection of food poisoning bacteria by bead assay with a microfluidic chip-based system. J Microbiol Methods 67:241–247

    Google Scholar 

  • Jelinek R and Kolusheva S (2004) Carbohydrate biosensors. Chem Rev 104:5987–6015

    Google Scholar 

  • Jeng ES, Moll AE, Roy AC, Gastala JB and Strano MS (2006) Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Letters 6:371–375

    Google Scholar 

  • Joiner KA, Schmetz MA, Goldman RC, Leive L and Frank MM (1984) Mechanism of Bacterial-Resistance to Complement-Mediated Killing - Inserted C5b-9 Correlates with Killing for Escherichia-Coli O111b4 Varying in O-Antigen Capsule and O-Polysaccharide Coverage of Lipid-a Core Oligosaccharide. Infect Immun 45:113–117

    Google Scholar 

  • Jones C (2005) Vaccines based on the cell surface carbohydrates of pathogenic bacteria. An Acad Bras Cienc 77: 293–324

    Google Scholar 

  • Joralemon MJ, Murthy KS, Remsen EE, Becker ML and Wooley KL (2004) Synthesis, characterization, and bioavailability of mannosylated shell cross-linked nanoparticles. Biomacromolecules 5:903–913

    Google Scholar 

  • Kaspar CW and Tartera C (1990) Methods for Detecting Microbial Pathogens in Food and Water. Methods Mircrobiol 22:497–531

    Google Scholar 

  • Katamay MM (1990) Assessing Defined-Substrate Technology for Meeting Monitoring Requirements of the Total Coliform Rule. J Am Water Work Assoc 82:83–87

    Google Scholar 

  • Kersten B, Wanker EE, Hoheisel JD and Angenendt P (2005) Multiplex approaches in protein microarray technology. Expert Rev Proteomics 2:499–510

    Google Scholar 

  • Keum KC, Yoo SM, Lee SY, Chang KH, Yoo NC, Yoo WM, Kim JM, Choi JY, Kim JS and Lee G (2006) DNA microarray-based detection of nosocomial pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii. Mol Cell Probes 20:42–50

    Google Scholar 

  • Khan AS, Kniep B, Oelschlaeger TA, Van Die I, Korhonen T and Hacker J (2000) Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect Immun 68:3541–3547

    Google Scholar 

  • Khan I, Desai DV and Kumar A (2004) Carbochips: a new energy for old biobuilders. J Biosci Bioeng 98:331–337

    Google Scholar 

  • Kim IB, Erdogan B, Wilson JN and Bunz UHF (2004) Sugar-poly(para-phenylene ethynylene) conjugates as sensory materials: Efficient quenching by Hg2+ and Pb2+ ions. Chemistry-a European Journal 10:6247–6254

    Google Scholar 

  • Kim IB, Wilson JN and Bunz UHF (2005) Mannose-substituted PPEs detect lectins: A model for Ricin sensing. Chem Commun. 1273–1275

    Google Scholar 

  • Kisiela D, Laskowska A, Sapeta A, Kuczkowski M, Wieliczko A and Ugorski M (2006) Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Microbiol-Sgm 152:1337–1346

    Google Scholar 

  • Kisiela D, Sapeta A, Kuczkowski M, Stefaniak T, Wieliczko A, and Ugorski M (2005). Characterization of FimH adhesins expressed by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: Reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73, 6187–6190.

    Google Scholar 

  • Klefel MJ and von Itzstein M (2002) Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Chemical Reviews 102:471–490

    Google Scholar 

  • Klemm P, Christiansen G, Kreft B, Marre R and Bergmans H (1994) Reciprocal Exchange of Minor Components of Type-1 and F1c Fimbriae Results in Hybrid Organelles with Changed Receptor Specificities. J Bacteriol 176:2227–2234

    Google Scholar 

  • Kuehn, M. J., Heuser, J., Normark, S., and Hultgren, S. J. (1992). P Pili in Uropathogenic Escherichia-Coli Are Composite Fibers with Distinct Fibrillar Adhesive Tips. Nature 356, 252–255.

    Google Scholar 

  • Le Bouguenec C and Bertin Y (1999) AFA and F17 adhesins produced by pathogenic Escherichia coli strains in domestic animals. Vet Res 30:317–342

    Google Scholar 

  • Lee CJ (1987) Bacterial Capsular Polysaccharides - Biochemistry, Immunity and Vaccine. Mol Immunol 24:1005–1019

    Google Scholar 

  • Li J, Zacharek S, Chen X, Wang JQ, Zhang W, Janczuk A and Wang PG (1999) Bacteria targeted by human natural antibodies using alpha-Gal conjugated receptor-specific glycopolymers. Bioorg Med Chem 7:1549–1558

    Google Scholar 

  • Li NQ, Wang JX and Li MX (2003) Electrochemistry at carbon nanotube electrodes. Reviews in Analytical Chemistry 22:19–33

    Google Scholar 

  • Li YJ, Ma BL, Fan Y, Kong XG and Li JH (2002) Electrochemical and Raman studies of the biointeraction between Escherichia coli and mannose in polydiacetylene derivative supported on the self-assembled monolayers of octadecanethiol on a gold electrode. Anal Chem 74:6349–6354

    Google Scholar 

  • Lin CC, Yeh YC, Yang CY, Chen CL, Chen GF, Chen CC and Wu YC (2002) Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc 124:3508–3509

    Google Scholar 

  • Lin FYH, Sabri M, Alirezaie J, Li DQ and Sherman PM (2005) Development of a nanoparticle-labeled microfluidic immunoassay for detection of pathogenic microorganisms. Clin Diagn Lab Immunol 12:418–425

    Google Scholar 

  • Lis H and Sharon N (1998) Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    Google Scholar 

  • Lotter H, Russmann H, Heesemann J and Tannich E (2004) Oral vaccination with recombinant Yersinia enterocolitica expressing hybrid type III proteins protects gerbils from amebic liver abscess. Infect Immun 72:7318–7321

    Google Scholar 

  • Louws FJ, Rademaker JLW and de Bruijn FJ (1999) The three Ds of PCR-based genomic analysis of phytobacteria: Diversity, detection, and disease diagnosis. Annu Rev Phytopathol 37:81–125

    Google Scholar 

  • Love KR and Seeberger PH (2002) Carbohydrate arrays as tools for glycomics. Angew Chem Int Ed 41:3583–3586

    Google Scholar 

  • Ma BL, Fan Y, Zhang LG, Kong XG, Li YJ and Li JH (2003) Direct colorimetric study on the interaction of Escherichia coli with mannose in polydiacetylene Langmuir-Blodgett films. Colloids and Surfaces B-Biointerfaces 27:209–213

    Google Scholar 

  • Ma ZF, Li JR, Jiang L, Cao J and Boullanger P (2000) Influence of the spacer length of glycolipid receptors in polydiacetylene vesicles on the colorimetric detection of Escherichia coli. Langmuir 16:7801–7804

    Google Scholar 

  • Ma ZF, Li JR, Liu MH, Cao J, Zou ZY, Tu J and Jiang L (1998) Colorimetric detection of Escherichia coli by polydiacetylene vesicles functionalized with glycolipid. J Am Chem Soc 120:12678–12679

    Google Scholar 

  • Mahal LK, Pilobello K and Krishnamoorthy L (2004) Development of a lectin microarray for the glycomic profiling of cells. Glycobiology 14:1203–1203

    Google Scholar 

  • Mahdavi J, Sonden B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angstrom J, Larsson T, Teneberg S, Karlsson KA et al. (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578

    Google Scholar 

  • Mammen M, Choi SK and Whitesides GM (1998) Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2755–2794

    Google Scholar 

  • Mantle M and Husar SD (1994) Binding of Yersinia-Enterocolitica to Purified, Native Small-Intestinal Mucins from Rabbits and Humans Involves Interactions with the Mucin Carbohydrate Moiety. Infect Immun 62:1219–1227

    Google Scholar 

  • Marks T and Sharp R (2000) Bacteriophages and biotechnology: A review. J Chem Technol Biotechnol 75:6–17

    Google Scholar 

  • Marsh JW and Taylor RK (1999) Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus. J Bacteriol 181:1110–1117

    Google Scholar 

  • McCabe-Sellers BJ and Beattie SE (2004) Food safety: Emerging trends of foodborne illness surveillance and prevention. J Am Diet Assoc 104:1708–1717

    Google Scholar 

  • McQuade DT, Pullen AE and Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100: 2537–2574

    Google Scholar 

  • Mohammadi T, Savelkoul PHM, Pietersz RNI and Reesink HW (2006) Applications of real-time PCR in the screening of platelet concentrates for bacterial contamination. Expert Rev Mol Diagn 6:865–872

    Google Scholar 

  • Montecucco C and Rappuoli R (2001) Living dangerously: How Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol 2:457–466

    Google Scholar 

  • Monzo A and Guttman A (2006) Immobilization techniques for mono- and oligosaccharide microarrays. Qsar & Combinatorial Science 25:1033–1038

    Google Scholar 

  • Moxon ER and Kroll JS (1990) The Role of Bacterial Polysaccharide Capsules as Virulence Factors. Curr Top Microbiol Immunol 150:65–85

    Google Scholar 

  • Mrksich M (2004) An early taste of functional glycomics. Chem Biol 11:739–740

    Google Scholar 

  • Nagy JO, Spevak W, Charych DH, Schaefer ME, Gilbert JH and Bednarski MD (1993) Polymerized Liposomes Containing C-Glycosides of Sialic-Acid Are Potent Inhibitors of Influenza-Virus Hemagglutination and Invitro Infectivity. J Cell Biochem 382–382

    Google Scholar 

  • Nassif X, Pujol C, Morand P and Eugene E (1999) Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol Microbiol 32:1124–1132

    Google Scholar 

  • Nilsson KGI and Mandenius CF (1994) A Carbohydrate Biosensor Surface for the Detection of Uropathogenic Bacteria. Bio-Technology 12:1376–1378

    Google Scholar 

  • O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C et al. (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Google Scholar 

  • O’Riordan K and Lee JC (2004) Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17:218–234

    Google Scholar 

  • Olsen JE, Aabo S, Hill W, Notermans S, Wernars K, Granum PE, Popovic T, Rasmussen HN and Olsvik O (1995) Probes and Polymerase Chain-Reaction for Detection of Food-Borne Bacterial Pathogens. Int J Food Microbiol 28:1–78

    Google Scholar 

  • Ono E, Abe K, Nakazawa M and Naiki M (1989) Ganglioside Epitope Recognized by K99-Fimbriae from Entero-Toxigenic Escherichia-Coli. Infect Immun 57:907–911

    Google Scholar 

  • Orskov I, Orskov F, Jann B and Jann K (1977) Serology, Chemistry, and Genetics of O and K Antigens of Escherichia-Coli. Bacteriol Rev 41:667–710

    Google Scholar 

  • Ovodov YS (2006a) Bacterial capsular antigens. Structural patterns of capsular antigens. Biochemistry-Moscow 71: 937–954

    Google Scholar 

  • Ovodov YS (2006b) Capsular antigens of bacteria. Capsular antigens as the basis of vaccines against pathogenic bacteria. Biochemistry-Moscow 71:955–961

    Google Scholar 

  • Palma AS, Feizi T, Zhang YB, Stoll MS, Lawson AM, Diaz-Rodriguez E, Campanero-Rhodes MA, Costa J, Gordon S, Brown GD and Chai WG (2006) Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281:5771–5779

    Google Scholar 

  • Park S, Lee MR, Pyo SJ and Shin I (2004) Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J Am Chem Soc 126:4812–4819

    Google Scholar 

  • Park SJ and Shin IJ (2002) Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew Chem Int Ed 41:3180–3182

    Google Scholar 

  • Paulson, J. C., Blixt, O., and Collins, B. E. 2006. Sweet spots in functional glycomics. Nat. Chem. Biol. 2: 238–248.

    Google Scholar 

  • Pier GB (2003) Promises and pitfalls of Pseudomonas aeruginosa lipopolysaccharide as a vaccine antigen. Carbohydr Res 338:2549–2556

    Google Scholar 

  • Pontius FW (2000) Reconsidering the Total Coliform Rule. J Am Water Work Assoc 92:14

    Google Scholar 

  • Popescu MA and Toms SA (2006) In vivo optical imaging using quantum dots for the management of brain tumors. Expert Rev Mol Diagn 6:879–890

    Google Scholar 

  • Prasad, S. M., Yin, Y. B., Rodzinski, E., Tuomanen, E. I., and Masure, H. R. (1993). Identification of a Carbohydrate-Recognition Domain in Filamentous Hemagglutinin from Bordetella-Pertussis. Infect Immun 61, 2780–2785.

    Google Scholar 

  • Prescher JA and Bertozzi CR (2006) Chemical technologies for probing glycans. Cell 126:851–854.

    Google Scholar 

  • Qian XP, Metallo SJ, Choi IS, Wu HK, Liang MN and Whitesides GM (2002) Arrays of self-assembled monolayers for studying inhibition of bacterial adhesion. Anal Chem 74:1805–1810

    Google Scholar 

  • Que NLS Lin SH, Cotter RJ and Raetz CRH (2000a) Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli - Demonstration of a conserved distal unit and a variable proximal portion. J Biol Chem 275:28006–28016

    Google Scholar 

  • Que NLS, Ribeiro AA and Raetz CRH (2000b) Two-dimensional NMR spectroscopy and structures of six lipid A species from Rhizobium etli CE3 - Detection of an acyloxyacyl residue in each component and origin of the aminogluconate moiety. J Biol Chem 275:28017–28027

    Google Scholar 

  • Raetz CRH (1990) Biochemistry of Endotoxins. Annu Rev Biochem 59:129–170

    Google Scholar 

  • Raetz CRH (1993) Bacterial-Endotoxins - Extraordinary Lipids That Activate Eukaryotic Signal-Transduction. J Bacteriol 175:5745–5753

    Google Scholar 

  • Raetz CRH and Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Google Scholar 

  • Ratner DM, Adams EW, Disney MD and Seeberger PH (2004a) Tools for glycomics: Mapping interactions of carbohydrates in biological systems. Chembiochem 5:1375–1383

    Google Scholar 

  • Ratner DM, Adams EW, Su J, O’Keefe BR, Mrksich M and Seeberger PH (2004b) Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. Chembiochem 5:379–382

    Google Scholar 

  • Reichert A, Nagy JO, Spevak W and Charych D (1995) Polydiacetylene Liposomes Functionalized with Sialic-Acid Bind and Colorimetrically Detect Influenza-Virus. J Am Chem Soc 117:829–830

    Google Scholar 

  • Reynolds AJ, Haines AH and Russell DA (2006) Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions. Langmuir 22:1156–1163

    Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Google Scholar 

  • Robinson A, Fang JM, Chou PT, Liao KW, Chu RM and Lee SJ (2005) Probing lectin and sperm with carbohydrate-modified quantum dots. Chembiochem 6:1899–1905

    Google Scholar 

  • Rocchetta HL, Burrows LL and Lam JS (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63:523–553

    Google Scholar 

  • Roche N, Angstrom J, Hurtig M, Larsson T, Boren T and Teneberg S (2004) Helicobacter pylori and complex gangliosides. Infect Immun 72:1519–1529

    Google Scholar 

  • Roos V, Schembri MA, Ulett GC and Klemm P (2006) Asymptomatic bacteriuria Escherichia coli strain 83972 carries mutations in the foc locus and is unable to express F1C fimbriae. Microbiol-Sgm 152:1799–1806

    Google Scholar 

  • Roy R (2003) A decade of glycodendrimer chemistry. Trends Glycosci Glyc 15:291–310

    Google Scholar 

  • Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B and Newburg DS (2003) Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 278:14112–14120

    Google Scholar 

  • Samuel G and Reeves P (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338:2503–2519

    Google Scholar 

  • Sauer, F. G., Barnhart, M., Choudhury, D., Knights, S. D., Waksman, G., and Hultgren, S. J. (2000). Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 10, 548–556.

    Google Scholar 

  • Schofield CL, Haines AH, Field RA and Russell DA (2006) Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 22:6707–6711

    Google Scholar 

  • Schweizer F, Jiao HL, Hindsgaul O, Wong WY and Irvin RT (1998) Interaction between the pili of Pseudomonas aeruginosa PAK and its carbohydrate receptor beta-D-Ga1NAc(1 -> 4)beta-D-Gal analogs. Can J Microbiol 44:307–311

    Google Scholar 

  • Seelig R, Renz M, Bottner C, Stockinger K, Czichos J, Schulz V and Seelig HP (1991) Rapid Diagnosis of Tuberculosis by Polymerase Chain-Reaction (Pcr). Immun Infekt 19:179–185

    Google Scholar 

  • Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochimica Et Biophysica Acta-General Subjects 1760:527–537

    Google Scholar 

  • Sharrna P, Brown S, Walter G, Santra S and Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123:471–485

    Google Scholar 

  • Sheng HQ, Lim JY, Knecht HJ, Li J and Hovde CJ (2006) Role of Escherichia coli O157: H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect Immun 74:4685–4693

    Google Scholar 

  • Sherigara BS, Kutner W and D’Souza F (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15:753–772

    Google Scholar 

  • Shin I, Park S and Lee MR (2005) Carbohydrate microarrays: An advanced technology for functional studies of glycans. Chemistry-a European Journal 11:2894–2901

    Google Scholar 

  • Shinefield HR and Black S (2005) Prevention of Staphylococcus aureus infections: advances in vaccine development. Expert Rev Vaccines 4:669–676

    Google Scholar 

  • Shriver-Lake LC, Taitt CR and Ligler FS (2004) Applications of array biosensor for detection of food allergens. J AOAC Int 87:1498–1502

    Google Scholar 

  • Skurnik M and Bengoechea JA (2003) Biosynthesis and biological role of lipopolysaccharide O-antigens of pathogenic Yersiniae. Carbohydr Res 338:2521–2529

    Google Scholar 

  • Smedley JG, Jewell E, Roguskie J, Horzempa J, Syboldt A, Stolz DB and Castric P (2005) Influence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function. Infect Immun 73:7922–7931

    Google Scholar 

  • Smith EA, Thomas WD, Kiessling LL and Corn RM (2003) Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J Am Chem Soc 125:6140–6148

    Google Scholar 

  • Sood RK, Fattom A, Pavliak V and Naso RB (1996) Capsular polysaccharide-protein conjugate vaccines. Drug Discov Today 1:381–387

    Google Scholar 

  • Spevak W, Nagy JO, Charych DH, Schaefer ME, Gilbert JH and Bednarski MD (1993) Polymerized Liposomes Containing C-Glycosides of Sialic-Acid - Potent Inhibitors of Influenza-Virus Invitro Infectivity. J Am Chem Soc 115:1146–1147

    Google Scholar 

  • Stevens J, Blixt O, Paulson JC and Wilson IA (2006) Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nature Reviews Microbiology 4;857–864

    Google Scholar 

  • Stoughton RB (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74:53–82

    Google Scholar 

  • Su YL, Li JR, Jiang L and Cao J (2005) Biosensor signal amplification of vesicles functionalized with glycolipid for colorimetric detection of Escherichia coli. J Colloid Interface Sci 284:114–119

    Google Scholar 

  • Sun CY, Zhang YJ, Fan Y, Li YJ and Li JH (2004a) Mannose-Escherichia coli interaction in the presence of metal cations studied in vitro by colorimetric polydiacetylene/glycolipid liposomes. J Inorg Biochem 98:925–930

    Google Scholar 

  • Sun XL, Cui WX, Haller C and Chaikof EL (2004b) Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads. Chembiochem 5:1593–1596

    Google Scholar 

  • Swiatlo E and Ware D (2003) Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS Immunol Med Microbiol 38:1–7

    Google Scholar 

  • Swords WE, Jones PA and Apicella MA (2003) The lipo-oligosaccharides of Haemophilus influenzae: an interesting array of characters. J Endoxtin Res 9:131–144

    Google Scholar 

  • Takikawa Y, Mori H, Otsu Y, Matsuda Y, Nonomura T, Kakutani K, Tosa Y, Mayama S and Toyoda H (2002) Rapid detection of phylloplane bacterium Enterobacter cloacae based on chitinase gene transformation and lytic infection by specific bacteriophages. J Appl Microbiol 93:1042–1050

    Google Scholar 

  • Telford, J. L., Barocchi, M. A., Margarit, I., Rappuoli, R., and Grandi, G. (2006). Pili in Gram-positive pathogens. Nature Reviews Microbiology 4, 509–519.

    Google Scholar 

  • Teneberg S, Unemo M, Aspholm-Hurtig M, Boren T and Danielsson D (2005) The sialic acid-binding SabA adhesin of Helicobacter pylori is essential for non-opsonic activation of human neutrophils. Helicobacter 10:495–495

    Google Scholar 

  • Teneberg S, Willemsen PTJ, Degraaf FK and Karlsson KA (1993) Calf Small-Intestine Receptors for K99 Fimbriated Enterotoxigenic Escherichia-Coli. FEMS Microbiol Lett 109:107–112

    Google Scholar 

  • Tewari R, Ikeda T, Malaviya R, Macgregor JI, Little JR, Hultgren SJ and Abraham SN (1994) The Papg Tip Adhesin of P-Fimbriae Protects Escherichia-Coli from Neutrophil Bactericidal Activity. Infect Immun 62:5296–5304

    Google Scholar 

  • Tikkanen K, Haataja S, Francoisgerard C and Finne J (1995) Purification of a Galactosyl-Alpha-1-4-Galactose-Binding Adhesin from the Gram-Positive Meningitis-Associated Bacterium Streptococcus-Suis. J Biol Chem 270: 28874–28878

    Google Scholar 

  • Tinker, J. K., and Clegg, S. (2000). Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar typhimurium. Infect Immun 68, 3305–3313.

    Google Scholar 

  • Toze S (1999) PCR and the detection of microbial pathogens in water and wastewater. Water Research 33:3545–3556

    Google Scholar 

  • Ukuku DO (2006) Effect of sanitizing treatments on removal of bacteria from cantaloupe surface, and re-contamination with Salmonella. Food Microbiol 23:289–293

    Google Scholar 

  • Unemo M, Aspholm-Hurtig M, Ilver D, Bergstrom J, Boren T, Danielsson D and Teneberg S (2005) The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J Biol Chem 280:15390–15397

    Google Scholar 

  • Viboud GI and Bliska JB (2005) Yersinia outer proteins: Role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89

    Google Scholar 

  • Wang DN (2003) Carbohydrate microarrays. Proteomics 3:2167–2175

    Google Scholar 

  • Wang DN, Liu SY, Trummer BJ, Deng C and Wang AL (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat Biotechnol 20:275–281

    Google Scholar 

  • Wang HF, Gu LR, Lin Y, Lu FS, Meziani MJ, Luo PGJ, Wang W, Cao L and Sun YP (2006a) Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. J Am Chem Soc 128: 13364–13365

    Google Scholar 

  • Wang J, Uttamehandani M, Sun HY and Yao SQ (2006b) Small molecule microarrays: Applications using specially tagged chemical libraries. Qsar & Combinatorial Science 25:1009–1019

    Google Scholar 

  • Weintraub A (2003) Immunology of bacterial polysaccharide antigens. Carbohydr Res 338:2539–2547

    Google Scholar 

  • Weis WI and Drickamer K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65:441–473

    Google Scholar 

  • Wenneras C, Holmgren J and Svennerholm AM (1990) The Binding of Colonization Factor Antigens of Entero-Toxigenic Escherichia-Coli to Intestinal-Cell Membrane-Proteins. FEMS Microbiol Lett 66:107–112

    Google Scholar 

  • Whitfield C (1995) Biosynthesis of Lipopolysaccharide O-Antigens. Trends Microbiol 3:178–185

    Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Google Scholar 

  • Whitfield C and Paiment A (2003) Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 338:2491–2502

    Google Scholar 

  • Whitfield C and Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319

    Google Scholar 

  • Wilkinson SG (1996) Bacterial lipopolysaccharides - Themes and variations. Prog Lipid Res 35:283–343

    Google Scholar 

  • Winberg J, Mollby R, Bergstrom J, Karlsson KA, Leonardsson I, Milh MA, Teneberg S, Haslam D, Marklund BI and Normark S (1995) The Papg-Adhesin at the Tip of P-Fimbriae Provides Escherichia-Coli with a Competitive Edge in Experimental Bladder Infections of Cynomolgus Monkeys. J Exp Med 182:1695–1702

    Google Scholar 

  • Winssinger N and Harris JL (2005) Microarray-based functional protein profiling using peptide nucleic acid-encoded libraries. Expert Rev Proteomics 2:937–947

    Google Scholar 

  • Wong CH (1999) Mimics of complex carbohydrates recognized by receptors. Accounts Chem Res 32:376–385

    Google Scholar 

  • Wong CH (2005) Protein glycosylation: New challenges and opportunities. J Org Chem 70:4219–4225

    Google Scholar 

  • Xue CH, Donuru VRR and Liu HY (2006a) Facile, Versatile Pre-polymerization and Post-polymerization Functionalization Approaches for Well-defined Fluorescent Conjugated Fluorene-based Glycopolymers. Macromolecules 39:5747–5752

    Google Scholar 

  • Xue CH, Jog SP, Murthy P and Liu HY (2006b) Synthesis of highly water-soluble conjugated fluorescent glycopoly(p-phenylene)s for lectin and escherichia coli. Biomacromolecules 7:2470–2474

    Google Scholar 

  • Zen JM (2003) Flow injection analysis of ascorbic acid in real samples using a highly stable chemically modified screen-printed electrode. Electroanalysis 15:1171–1176

    Google Scholar 

  • Zhang LG, Fan Y, Ma BL, Xu XY, Kong XG, Shen DZ and Li YJ (2002) Colorimetric transition process of polydiacetylene/mannoside derivative Langmuir-Schaefer film by binding Escherichia jm 109. Thin Solid Films 419:194–198

    Google Scholar 

  • Zhang Y and Bliska JB (2005) Role of macrophage apoptosis in the pathogenesis of Yersinia. In: Editor Name (ed) Role of Apoptosis in Infection. Springer-Verlag, Berlin, pp 151–173

    Google Scholar 

  • Zhang YJ, Fan Y, Sun CY, Shen DZ, Li YJ and Li JH (2005) Functionalized polydiacetylene-glycolipid vesicles interacted with Escherichia coli under the TiO2 colloid. Colloids and Surfaces B-Biointerfaces 40:137–142

    Google Scholar 

  • Zhang YJ, Ma BL, Li YJ and Li JH (2004) Enhanced affinochromism of polydiacetylene monolayer in response to bacteria by incorporating US nano-crystallites. Colloids and Surfaces B-Biointerfaces 35:41–44

    Google Scholar 

  • Zhao XJ, Hilliard LR, Mechery SJ, Wang YP, Bagwe RP, Jin SG and Tan WH (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Science 101:15027–15032

    Google Scholar 

  • Zheng T, Peelen D and Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127:9982–9983

    Google Scholar 

  • Zweigner J, Schumann RR and Weber JR (2006) The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microbes Infect 8:946–952

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, H. (2008). Pathogenic Bacterial Sensors Based on Carbohydrates as Sensing Elements. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics