Skip to main content

Robust Hybrid Sliding Mode Control for Uncertain Nonlinear Systems Using Output Recurrent CMAC

  • Chapter
Trends in Intelligent Systems and Computer Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 6))

  • 812 Accesses

In recent years, the sliding-mode control (SMC) theory has been widely and successfully applied in different systems such as control systems, power systems, and biped robotics, among others [12, 13]. For control systems the salient features of SMC techniques are fast convergence, external disturbance rejection, and strong robustness [12]. However, the uncertainty bound in SMC may not be easily obtained; a large switching control gain is always chosen in order to guarantee system stability. Unfortunately, this causes high-frequency control chattering which may result in unforeseen instability and deteriorates system performance. The uncertainty bound can be estimated via an adaptive algorithm or intelligent approximation tool, for example, neural networks or fuzzy systems. A number of works that proposed an uncertainty bound estimator to reduce control chattering in SMC have been reported in [8, 15, 17].

The advantages of using CMAC over NN in many practical applications have been presented in recent literature [4-6, 14]. However, the conventional CMAC uses local constant binary receptive-field basis functions. The disadvantage is that its output is constant within each quantized state and the derivative information is not preserved. For acquiring the derivative information of input and output variables, Chiang and Lin developed a CMAC network with a nonconstant differentiable Gaussian receptive-field basis function, and provided the convergence analyses of this network [3]. Based on this concept, some researchers have utilized the CMACs with a Gaussian receptive-field basis function to control nonlinear systems [9, 10]. However, the major drawback of these CMACs is that their application domain is limited to static problems due to their inherent network structure.

This study is organized as follows. Problem formulation is described in Sect. 3.2. The proposed RHSMC scheme is constructed in Sect. 3.3. In Sect. 3.4, the simulation results of the proposed RHSMC for a nonlinear biped robot system are presented. Conclusions are drawn in Sect. 3.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus J S (1975) Data storage in the cerebellar model articulation controller (CMAC), J. Dyn. Syst. Measurement Contr., vol. 97, no. 3, pp. 228–233.

    MATH  Google Scholar 

  2. Chen B S, Lee C H, Chang Y C (1996) H ∞ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach, IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 32–43.

    Article  Google Scholar 

  3. Chiang C T, Lin C S (1996) CMAC with general basis functions, Neural Netw., vol. 9, no. 7, pp. 1199–1211.

    Article  Google Scholar 

  4. Gonzalez-Serrano F J, Figueiras-Vidal A R, Artes-Rodriguez A (1998) Generalizing CMAC architecture and training, IEEE Trans. Neural Netw., vol. 9, no. 6, pp. 1509–1514.

    Article  Google Scholar 

  5. Jan J C, Hung S L (2001) High-order MS_CMAC neural network, IEEE Trans. Neural Netw., vol. 12, no. 3, pp. 598–603.

    Article  Google Scholar 

  6. Kim Y H, Lewis F L (2000) Optimal design of CMAC neural-network controller for robot manipulators, IEEE Trans. Syst. Man Cybern. C, vol. 30, no. 1, pp. 22–31.

    Article  Google Scholar 

  7. Lane S H, Handelman D A, Gelfand J J (1992) Theory and development of higher-order CMAC neural networks, IEEE Control Syst. Mag., vol. 12, no. 2, pp. 23–30.

    Article  Google Scholar 

  8. Lin C M, Hsu C F (2003) Neural network hybrid control for antilock braking systems, IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 351–359.

    Article  Google Scholar 

  9. Lin C M, Peng Y F (2004) Adaptive CMAC-based supervisory control for uncertain nonlinear systems, IEEE Trans. Syst. Man Cybern. B, vol. 34, no. 2, pp. 1248–1260.

    Article  Google Scholar 

  10. Lin C M, Peng Y F (2005) Missile guidance law design using adaptive cerebellar model articulation controller, IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 636–644.

    Article  Google Scholar 

  11. Liu Z, Li C (2003) Fuzzy neural networks quadratic stabilization output feedback control for biped robots via H ∞ approach, IEEE Trans. Syst. Man Cybern. B, vol. 33, no. 1, pp. 67–84.

    Google Scholar 

  12. Slotine J J E, Li W P (1991) Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  13. Utkin V I (1992) Sliding Modes in Control and Optimization. New York: Springer-Verlag.

    MATH  Google Scholar 

  14. Wai R J, Lin C M, Peng Y F (2003) Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor, IEE Proc. Control Theory Appl., vol. 150, no. 3, pp. 221–232.

    Article  Google Scholar 

  15. Wai R J, Lin F J (1999) Fuzzy neural network sliding-model position controller for induction servo motor driver, IEE Proc. Electr. Power Appl., vol. 146, no. 3, pp. 297–308.

    Article  Google Scholar 

  16. Wang L X (1994) Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  17. Yoo B, Ham W (1998) Adaptive fuzzy sliding mode control of nonlinear system, IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 315–321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lin, CM., Lin, MH., Chen, CH. (2008). Robust Hybrid Sliding Mode Control for Uncertain Nonlinear Systems Using Output Recurrent CMAC. In: Castillo, O., Xu, L., Ao, SI. (eds) Trends in Intelligent Systems and Computer Engineering. Lecture Notes in Electrical Engineering, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74935-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74935-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74934-1

  • Online ISBN: 978-0-387-74935-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics