Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 6))

Experimental technologies in molecular biology (particularly oligonucleotide and cDNA arrays) now make it possible to simultaneously measure mRna-levels for thousand of genes [1]. One drawback is the difficulty in organizing this huge amount of data in functional structures (for instance, in cluster configurations); this can be useful to gain insight into regulatory processes or even for a statistical dimensionality reduction.

In this chapter, we consider a simplified model based on mRna-data only, which is an effective gene-to-gene interaction structure. This can provide at least a starting point for hypotheses generation for further data mining.

The chapter is organized as follows. In Sect. 11.2 we give a brief overview of the kernel methods and SVC algorithm. In Sect. 11.3 we address the MGRN problem and in Sect. 11.4 we apply our formulation to clustering the training set. In Sect. 11.5 we discuss the numerical results and finally, in Sect. 11.6, we conclude and discuss some directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eisen, M., Brown, P. (1999) Dna arrays for analysis of gene expression. Methods in Enzymology 303: 179–205.

    Article  Google Scholar 

  2. Bittner, M., Meltzer, P., Trent, J. (1999) Data analysis and integration: Of steps and arrows. Nature Genetics 22: 213–215.

    Article  Google Scholar 

  3. Chen, Y., Bittner, M.L., Rougherty, E.R. (1999) Issues associated with microarray data analysis and integration. Nature Genetics 22: 213–215.

    Article  MATH  Google Scholar 

  4. Heyer, L.J., Kruglyak, S., Yooseph, S. (1999) Exploring expression data: Identification and analysis of coexpressed genes. Genome Research 9: 1106–1115.

    Article  Google Scholar 

  5. Filkov, V., Skiena, S., Zhi, J. (2002) Analysis techniques for microarray time-series data. Journal of Computational Biology 9: 317–330.

    Article  Google Scholar 

  6. Shawe-Taylor, J., Cristianini, N. (2004) Kernel Methods for Pattern Analysis. Cambridge University Press, UK.

    Google Scholar 

  7. Schölkopf, B., Smola, A.J., Muller, K.R. (1999) Advances in Kernel Method - Support Vector Learning. Cambridge, MA: MIT Press.

    Google Scholar 

  8. Schölkopf, B., Tsuda, K., Vert, J.P. (2004) Kernel Methods in Computational Biology. Cambridge, MA: MIT Press.

    Google Scholar 

  9. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V. (2001) Support vector clustering. Journal of Machine Learning Research 2: 125–137.

    Article  Google Scholar 

  10. Gustafsson, M., Hörnquist, M., Lombardi, A. (2003) Large-scale reverse engineering by the lasso. Proceedings of International Conference on Systems Biology: 135–136.

    Google Scholar 

  11. Chen, T., Filkov, V., Skiena, S. (1999) Identifying gene regulatory networks from experimental data. Proceedings of the 3rd Annual International Conference on Computational Molecular Biology: 94–103.

    Google Scholar 

  12. Yang, J., Estivill-Castro, V., Chalup, S.K. (2002) Support vector custering trough proximity graph modelling. Proceedings of 9th International Conference on Neural Information Processing 2: 898–903.

    Google Scholar 

  13. Courant, R., Hilbert, D. (1953) Methods of Mathematical Physics, vol. 1. New York: Interscience.

    Google Scholar 

  14. Pozzi, S., Della Vedova, G., Mauri, G. (2005) An explicit upper bound for the approximation ratio of the maximum gene regulatory network problem. Proceedings on CMSB, 3082: 1–8.

    MathSciNet  Google Scholar 

  15. Cook, S. (1971) The complexity of theorem prouvem procedures. Proceedings of the 3rd Symposium of the ACM on the Theory of Computing: 151–158.

    Google Scholar 

  16. Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R. (1998) A genomic-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2: 65–73.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zoppis, I., Mauri, G. (2008). Clustering Dependencies with Support Vectors. In: Castillo, O., Xu, L., Ao, SI. (eds) Trends in Intelligent Systems and Computer Engineering. Lecture Notes in Electrical Engineering, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74935-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74935-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74934-1

  • Online ISBN: 978-0-387-74935-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics