Skip to main content

Towards Nanoelectronics Processor Architectures

  • Chapter
  • 614 Accesses

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

CMOS technology has moved beyond 80 nanometers in scale, and according to the International Technology Roadmap for Semiconductors (ITRS), is projected to reach beyond 22 nanometers in the next several years [1, 2]. At nanometer scale, CMOS devices start to meet the physical limits and further shrinking in the CMOS feature sizes is checkmated by the insurmountable barriers of quantum effects, leakage current and power consumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ITRS, International Technology Roadmap for Semiconductors Emerging Research Devices, 2006.

    Google Scholar 

  2. European Commission, Technology Roadmap for Nanoelectronics, 2001.

    Google Scholar 

  3. P. Avouris, J. Appenzeller, R. Martel and S. Wind, “Carbon Nanotube Elec- tronics”, Proceedings of the IEEE, vol. 91, n. 11, pp. 1772-1784, 2003.

    Article  Google Scholar 

  4. P. Mazumder, S. Kulkarni, M. Bhattacharya, J. P. Sun and G. I. Haddad, “Digital Circuit Applications of Resonant Tunneling Devices”, Proceedings of the IEEE, vol. 86, n. 4, pp. 664-686, April 1998.

    Article  Google Scholar 

  5. C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum Cellular Automata”, Nanotechnology, vol. 4, pp. 49-57, 1993.

    Article  Google Scholar 

  6. M. A. Kastner, “The Single-Electron Transistor”, Review of Modern Physics, vol. 64, pp. 849-858, 1992.

    Article  Google Scholar 

  7. R. H. Chen, A. N. Korotkov and K. K. Likharev, “Single-electron Transistor Logic”, Applied Physics Letters, vol. 68, n. 14, April 1996.

    Google Scholar 

  8. J. C. Ellenbogen and J. C. Love, “Architectures for Molecular Electronic Computers: 1. Logic Structures and an Adder Designed from Molecular Electronic Diodes”, Proceedings of the IEEE, vol. 88, n. 3, pp. 386-425, 2000.

    Article  Google Scholar 

  9. Y. G. Krieger, “Molecular Electronics: Current State and Future Trends”, Journal of Structural Chemistry, vol. 34, pp. 896-904, 1993.

    Article  Google Scholar 

  10. M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach and M. M. Ziegler, “Molecular Electronics: From Devices and Interconnect to Circuits and Architecture”, Proceedings of the IEEE, vol. 91, n. 11, pp. 1940-1957, November 2003.

    Article  Google Scholar 

  11. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams and J. R. Heath, “Electronically Configurable Molecular-Based Logic Gates”, Science, vol. 285, pp. 391-394, July 1999.

    Article  Google Scholar 

  12. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, “Spintronics: A Spin Based Electronics Vision for the Future”, Science, vol. 294, pp. 1488-1495, November 2001.

    Article  Google Scholar 

  13. Y. Huang, X. Duan, Y. Cui, L. J. Jauhon, K. Kim and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science, vol. 294, pp. 1313-1317, November 2001.

    Article  Google Scholar 

  14. P. J. Kuekes, D. R. Stewart and R. S. Williams, “The Crossbar Latch: Logic Value Storage, Restoration, and Inversion in Crossbar Circuits”, Journal of Applied Physics, vol. 97, n. 3, pp. 034301, July 2005.

    Article  Google Scholar 

  15. G. Snider, P. J. Kuekes and R. S. Williams, “CMOS-like Logic in Defective, Nanoscale Crossbars”, Nanotechnology, vol. 15, pp. 881-891, August 2004.

    Article  Google Scholar 

  16. G. Snider and W. Robinett, “Crossbar Demultiplexers for Nanoelectronics Based on n-Hot Codes”, IEEE Transactions on Nanotechnology, vol. 4, pp. 249-254, 2005.

    Article  Google Scholar 

  17. A. DeHon and M. J. Wilson, “Nanowire-based Sublithographic Programmable Logic Arrays”, in FPGA, pp. 123-132, 2004.

    Google Scholar 

  18. A. DeHon, “Array-Based Architecture for FET-Based, Nanoscale Electronics”, IEEE Transactions on Nanotechnology, vol. 2, n. 1, pp. 23-32, 2003.

    Article  MathSciNet  Google Scholar 

  19. D. B. Strukov and K. K. Likharev, “CMOL FPGA: A Reconfigurable Architecture for Hybrid Digital Circuits with Two-terminal Nanodevices”, Nanotechnology, vol. 16, pp. 888-900, April 2005.

    Article  Google Scholar 

  20. D. B. Strukov and K. K. Likharev, “A Reconfigurable Architecture for Hybrid CMOS/Nanodevice Circuits”, in ACM FPGA, pp. 131-140, 2006.

    Google Scholar 

  21. P. Beckett and A. Jennings, “Towards Nanocomputer Architecture”, in AsiaPacific Computer System Architecture Conference, pp. 141-150, 2002.

    Google Scholar 

  22. K. Nikolic, A. Sadek and M. Forshaw, “Architectures for Reliable Computing with Unreliable Nanodevices”, in Proceedings of the 1st IEEE Conference on Nanotechnology, pp. 254-259, 2001.

    Google Scholar 

  23. J. R. Heath, P. J. Kuekes, G. S. Snider and S. Williams, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology”, Science, vol. 280, pp. 1716-1721, June 1998.

    Article  Google Scholar 

  24. S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial Computing Using Molecular Electronics”, in ISCA, pp. 178-191, 2001.

    Google Scholar 

  25. S. C. Goldstein, M. Budiu, M. Mishra and G. Venkataramani, “Reconfigurable Computing and Electronic Nanotechnology”, in ASAP, pp. 132-143, 2003.

    Google Scholar 

  26. M. S. Montemerlo, J. C. Love, G. J. Opitech, D. G. Gordon and J. C. Ellenbogen, Technologies and Designs for Electronic Nanocomputers, MITRE, July 1996.

    Google Scholar 

  27. T. Juhnke and H. Klar, “Calculation of the Soft Error Rate of Submicron CMOS Logic Circuits”, IEEE Journal of Solid-State Circuits, vol. 30, n. 7, pp. 830-834, July 1995.

    Article  Google Scholar 

  28. T. Karnik, P. Hazucha and J. Patel, “Characterization of Soft Errors Caused by Single Event Upsets in CMOS Processes”, IEEE Transactions on Dependable and Secure Computing, vol. 1, pp. 128-143, April-June 2004.

    Article  Google Scholar 

  29. P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger and L. Alvisi, “Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational Logic”, in DSN, pp. 1112-1119, 2002.

    Google Scholar 

  30. M. Forshaw, R. Stadler, D. Crawley and K. Nikolic, “A Short Review of Nanoelectronic Architectures”, Nanotechnology, vol. 15, pp. 220-223, 2004.

    Article  Google Scholar 

  31. K. Nikolic, A. Sadek and M. Forshaw, “Fault-tolerant Techniques for Nanocomputers”, Nanotechnology, vol. 13, pp. 357-362, 2002.

    Article  Google Scholar 

  32. J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable Organ- isms from Unreliable Components”, in C. Shannon and J. McCarthy, editors, Automata Studies, Princeton University Press, Princeton, 1956.

    Google Scholar 

  33. J. Han and P. Jonker, “A System Architecture Solution for Unreliable Nanoelectronic Devices”, IEEE Transactions on Nanotechnology, vol. 1, n. 4, pp. 201-208, December 2002.

    Article  Google Scholar 

  34. J. Han, J. Gao, Y. Qi, P. Jonker and J. A. B. Fortes, “Toward Hardware- Redundant, Fault-Tolerant Logic for Nanoelectronics”, IEEE Design and Test of Computers, vol. 22, n. 4, pp. 328-339, July-August 2005.

    Article  Google Scholar 

  35. T. M. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microarchi- tecture Design”, in ACM/IEEE Annual Symposium on Microarchitecture, pp. 196-207, 1999.

    Google Scholar 

  36. P. Agrawal, “Fault Tolerance in Multiprocessor Systems without Dedicated Redundancy”, IEEE Transactions on Computers, vol. 37, pp. 385-362, March 1988.

    Google Scholar 

  37. D. K. Pradhan and N. H. Vaidya, “Roll-Forward Checkpointing Scheme: A Novel Fault-Tolerant Architecture”, IEEE Transactions on Computers, vol. 43, pp. 1163-1174, October 1994.

    Article  MATH  Google Scholar 

  38. A. Dahbura, K. Sabnani and W. Henry, “Spare Capacity as a Means of Fault Detection and Diagnosis in Multiprocessor Systems”, IEEE Transactions on Computers, vol. 38, n. 6, pp. 881-891, June 1989.

    Article  Google Scholar 

  39. S. Tridandapani, A. K. Somani and U. R. Sandadi, “Low Overhead Multiprocessor Allocation Strategies Exploiting System Spare Capacity for Fault Detection and Location”, IEEE Transactions on Computers, vol. 44, pp. 865-877, July 1995.

    Article  MATH  Google Scholar 

  40. M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar and I. Pomeranz, “TransientFault Recovery for Chip Multiprocessors”, IEEE Micro, vol. 23, n. 6, pp. 76-83, November/December 2003.

    Article  Google Scholar 

  41. G. Manimaran and C. S. R. Murthy, “A Fault-Tolerant Dynamic Scheduling Algorithm for Multiprocessor Real-Time Systems and Its Analysis”, IEEE Transactions on Parallel and Distributed Systems, vol. 9, pp. 1137-1152, November 1998.

    Article  Google Scholar 

  42. B. Izadi and F. Ozguner, “Enhanced Cluster k-Ary n-Cube, A Fault-Tolerant Multiprocessor”, IEEE Transactions on Computers, vol. 52, n. 11, pp. 1443-1453, November 2003.

    Article  Google Scholar 

  43. A. DeHon, “Nanowire-Based Programmable Architectures”, ACM JETC, vol. 1, n. 2, pp. 109-162, 2005.

    Article  MathSciNet  Google Scholar 

  44. R. B. Blahut, Algebraic Codes for Data Transmission, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, W., Orailoglu, A., Karri, R. (2008). Towards Nanoelectronics Processor Architectures. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics