Skip to main content

How does digital cinema compress images?

  • Chapter
Applied Signal Processing
  • 5287 Accesses

Abstract

The development of digital technologies has drastically modified the requirements and constraints that a good image representation format should meet. Originally, the requirements were to achieve good compression efficiency while keeping the computational complexity low. This has led in 1992 to the standardization of the JPEG format, which is still widely used today (see Chapter 8). Over the years however, many things have evolved: more computing power is available and the development of Internet has required image representation formats to be more flexible and network- oriented, to enable efficient access to images through heterogeneous devices.

In spite of the strong temporal redundancy of video, in the Digital Cinema industry each image from a movie is compressed separately1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Daubechies I., Ten lectures on wavelets. Society for Industrial and Applied Mathematics, 1992, ISBN 0–89871–274–2.

    Book  Google Scholar 

  • DCI. Digital cinema system specifications. Digital Cinema Initiatives (DCI), March 2005, URL http://www.dcimovies.com/.

    Google Scholar 

  • Foos D.H., Muka E., Slone R.M., Erickson B.J., Flynn M.J., Clunie D.A., Hildebrand L., Kohm K.S., Young S.S., JPEG2000 compression of medical imagery. Proceedings of SPIE, 3980:85, 2003.

    Article  Google Scholar 

  • Fossel S., Fottinger G., Mohr J., Motion JPEG2000 for high quality video systems. IEEE Transactions on Consumer Electronics, 49(4):787–791, 2003.

    Article  Google Scholar 

  • Janosky J., Witthus R.W., Using JPEG2000 for enhanced preservation and web access of digital archives. In IS&T’s 2004 Archiving Conference, pages 145– 149, April 2004.

    Google Scholar 

  • Kellerer H., Pferschy U., Pisinger D. Knapsack Problems. Springer Verlag, Berlin, 2004, ISBN 3–540–40286–1.

    Book  MATH  Google Scholar 

  • Mallat S., A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA, 2nd edition, 1999.

    MATH  Google Scholar 

  • Marpe D., George V., Cycon H.L., Barthel K.U., Performance evaluation of Motion-JPEG2000 in comparison with H. 264/AVC operated in pure intracoding mode. Proceedings of SPIE, 5266:129–137, 2003.

    Google Scholar 

  • Mitchell J.L., Pennebaker W.B., Software implementations of the Qcoder. IBM Journal of research and Development, 32(6):753–774, November 1988.

    Article  Google Scholar 

  • Ortega A., Optimal bit allocation under multiple rate constraints. In Data Compression Conference, pages 349–358, Snowbird, UT, April 1996.

    Google Scholar 

  • Ortega A., Ramchandran K., Rate-distortion methods for image and video compression. IEEE Signal Processing Magazine, 15(6):23–50, November 1998.

    Article  Google Scholar 

  • Ortega A., Ramchandran K., Vetterli M., Optimal trellis-based buffered compression and fast approximation. IEEE Transactions on Image Processing, 3(l):26–40, January 1994.

    Article  Google Scholar 

  • Prandolini R., 15444–9:2004 JPEG2000 image coding system -Part 9: Interactivity tools, apis and protocols. Technical Report, ISO/IEC JTC1/SC29 WG1, March 2004.

    Google Scholar 

  • Rabbani M., Joshi R., An overview of the JPEG2000 still image compression standard. Signal Processing: Image Communication, 17(1):3–48, January 2002.

    Article  Google Scholar 

  • Santa-Cruz D., Grosbois R., Ebrahimi T., JPEG2000 performance evaluation and assessment. Signal Processing: Image Communication, 17(1):113–130, January 2002.

    Article  Google Scholar 

  • Shoham Y., Gersho A., Efficient bit allocation for an arbitrary set of quantizers. IEEE Transactions on Signal Processing, 36(9): 1445–1453, September 1988.

    Google Scholar 

  • Skodras A., Christopoulos C., Ebrahimi T., The JPEG2000 still image compression standard. Signal Processing Magazine, IEEE, 18(5):36–58, 2001.

    Article  Google Scholar 

  • Smith M., Villasenor J., Intra-frame JPEG-2000 vs. Inter-frame compression comparison: The benefits and trade-offs for very high quality, high resolution sequences. SMPTE Technical Conference, Pasadena, CA, October 2004.

    Google Scholar 

  • Symes P., JPEG2000, the Professional compression scheme. Content Technology Magazine, 3(3), June 2006, URL http://svc126.wic003tv.server-web.com/CT-pdf/CT-May-June-2006.pdf.

    Google Scholar 

  • Taubman D., High performance scalable image compression with ebcot. IEEE Transactions on Image Processing, 9(7):1158–1170, July 2000.

    Article  Google Scholar 

  • Taubman D., Marcellin M.W., JPEG2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic, Boston, MA, USA, 2002.

    Google Scholar 

  • Taubman D., Prandolini R., Architecture, philosophy and performance of JPIP: Internet protocol standard for JPEG2000. In International Symposium on Visual Communications and Image Processing (VCIP), Lugano, Switzerland, July 2003.

    Google Scholar 

  • Taubman D., Rosenbaum R., Rate-distortion optimized interactive browsing of JPEG2000 images. In IEEE International Conference on Image Processing (ICIP), September 2003.

    Google Scholar 

  • Tzannes A., Ebrahimi T., Motion JPEG2000 for medical imaging. ISO/IEC wgln2883, Medical Imaging Ad Hoc Group, 2003.

    Google Scholar 

  • Wolsey L., Integer Programming. Wiley, New York, 1998.

    MATH  Google Scholar 

  • Zhang D.R., Wang X.X., The manipulation approach of JPEG2000 compressed remote sensing images. Proceedings of SPIE, 6044:315-324, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media New York

About this chapter

Cite this chapter

Descampe, A., De Vleeschouwer, C., Jacques, L., Marqués, F. (2009). How does digital cinema compress images?. In: Applied Signal Processing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74535-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74535-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74534-3

  • Online ISBN: 978-0-387-74535-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics