Skip to main content

Advanced EEG Signal Processing in Brain Death Diagnosis

  • Chapter

In this chapter, we present several electroencephalography (EEG) signal processing and statistical analysis methods for the purpose of clinical diagnosis of brain death, in which an EEG-based preliminary examination system was developed during the standard clinical procedure. Specifically, given the reallife recorded EEG signals, a robust principal factor analysis (PFA) associated with independent component analysis (ICA) approach is applied to reduce the power of additive noise and to further separate the brain waves and interference signals. We also propose a few frequency-based and complexity-based statistics for quantitative EEG analysis with an aim to evaluate the statistical significance differences between the coma patients and quasi-brain-death patients. Based on feature selection and classification, the system may yield a binary decision from the classifier with regard to the patient's status. Our empirical data analysis has shown some promising directions for real-time EEG analysis in clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akay, M. (ed.): Nonlinear Biomedical Signal Processing, vol. II Dynamical Analysis and Modeling. IEEE Press, New York (2001)

    Google Scholar 

  2. Amari, S.: Natural gradient works efficiently in learning. Neural Computation 10, 251–276 (1998)

    Article  Google Scholar 

  3. Amari, S.: Natural gradient for over- and under-complete bases in ICA. Neural Computation 11(8), 1875–1883 (1999)

    Article  Google Scholar 

  4. Amari, S., Cichocki, A., Yang, H.: Advances in Neural Information Processing Systems, vol. 8, chap. A new learning algorithm for blind signal separation, pp. 757–763. MIT, Cambridge, MA (1996)

    Google Scholar 

  5. Cao, J.: Lecture Notes in Artificial Intelligence, vol. 3973, chap. Analysis of the quasi-brain-death EEG data based on a robust ICA approach, pp. 1240–1247. Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  6. Cao, J., Murata, N., Amari, S., Cichocki, A., Takeda, T.: Independent component analysis for unaveraged single-trial MEG data decomposition and single-dipole source localization. Neurocomputing 49, 255–277 (2002)

    Article  Google Scholar 

  7. Cao, J., Murata, N., Amari, S., Cichocki, A., Takeda, T.: A robust approach to independent component analysis with high-level noise measurements. IEEE Transactions on Neural Networks 14(3), 631–645 (2003)

    Article  Google Scholar 

  8. Cardoso, J., Laheld, B.: Equivariant adaptive source separation. IEEE Transactions on Signal Processing 44, 3017–3030 (1996)

    Article  Google Scholar 

  9. Cardoso, J., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM Journal of Matrix Analysis and Applications 17, 145–151 (1996)

    Article  MathSciNet  Google Scholar 

  10. Carmeli, G., Knyazeva, G., Innocenti, G., Feo, O.: Assessment of EEG synchronization based on state-space analysis. NeuroImage 25, 330–354 (2005)

    Article  Google Scholar 

  11. Chen, F., Xu, J., Gu, F., Yu, X., Meng, X., Qiu, Z.: Dynamic process of information transmission complexity in human brains. Biological Cybernetics 83, 355–366 (2000)

    Article  Google Scholar 

  12. Chen, Z., Cao, J.: An empirical quantitative EEG analysis for evaluating clinical brain death. In: Processings of the 2007 IEEE Engineering in Medicine and Biology 29th Annual Conference, pp. 3880–3883. Lyon, France (2007)

    Chapter  Google Scholar 

  13. Chen, Z., Cao, J., Cao, Y., Zhang, Y., Gu, F., Zhu, G., Hong, Z., Wang, B., Cichocki, A.: An empirical EEG analysis in brain death diagnosis for adults. Cognitive Neurodynamics (under review)

    Google Scholar 

  14. Eelco, F., Wijdicks, M.: Brain death worldwide. Neurology 58, 20–25 (2002)

    Google Scholar 

  15. Gu, F., Meng, X., Shen, E.: Can we measure consciousness with EEG complexities? International Journal of Bifurcation and Chaos 13(3), 733–742 (2003)

    Article  MATH  Google Scholar 

  16. Hyv\ddot{a}rinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)

    Google Scholar 

  17. Lee, T., Girolami, M., Sejnowski, T.: Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation 11, 417–441 (1998)

    Article  Google Scholar 

  18. Lin, M., Chan, H., Fang, S.: Linear and nonlinear EEG indexes in relation to the severity of coma. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, vol. 5, pp. 4580–4583 (2005)

    Google Scholar 

  19. Makeig, S., Bell, A., Jung, T., Sejnowski, T.: Advances in Neural Information Processing System, vol. 8, chap. Independent component analysis of electroencephalographic data, pp. 145–151. MIT, Cambridge, MA (1996)

    Google Scholar 

  20. Marks, S., Zisfein, J.: Apneic oxygenation in apnea tests for brain death: a controlled trial. Neurology 47, 300–303 (1990)

    Google Scholar 

  21. Molgedey, L., Schuster, H.: Separation of a mixtures of independent signals using time delayed correlations. Physical Review Letters 72(23), 3634–3637 (1994)

    Article  Google Scholar 

  22. Niedermeyer, E.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippoincott Williams & Wilkins, Baltimore, MD (1991)

    Google Scholar 

  23. Peng, C., Buldyrev, S., Havlin, S., Simons, M., Stanleyn, H., Goldberger, A.: Mosaic organization of DNA nucleotides. Physical Review E 49, 1685–1689 (1994)

    Article  Google Scholar 

  24. Pincus, S.: Approximate entropy (apen) as a complexity measure. Proceedings of National Academy of Science 88, 110–117 (1991)

    Article  MathSciNet  Google Scholar 

  25. Roberts, J., Penny, W., Rezek, I.: Temporal and spatial complexity measures for EEG-based brain–computer interfacing. Medical and Biological Engineering and Computing 37(1), 93–99 (1998)

    Article  Google Scholar 

  26. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT, Cambridge, MA (2002)

    Google Scholar 

  27. Tanaka, T., Mandic, D.: Complex empirical mode decomposition. IEEE Signal Processing Letters 14, 101–104 (2007)

    Article  Google Scholar 

  28. Taylor, R.: Reexamining the definition and criteria of death. Seminars in Neurology 17, 265–270 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cao, J., Chen, Z. (2008). Advanced EEG Signal Processing in Brain Death Diagnosis. In: Mandic, D., Golz, M., Kuh, A., Obradovic, D., Tanaka, T. (eds) Signal Processing Techniques for Knowledge Extraction and Information Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74367-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74367-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74366-0

  • Online ISBN: 978-0-387-74367-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics