Skip to main content

Modelling dust distributions in the atmospheric boundary layer on Mars

  • Original Paper
  • Chapter
Atmospheric Boundary Layers

Abstract

A time and height dependent eddy diffusion model is used to investigate possible scenarios for the size distribution of dust in the lower atmosphere of Mars. The dust is assumed to either have been advected from a distant source or to have originated locally. In the former case, the atmosphere is assumed to initially contain dust particles with sizes following a modified gamma distribution. Larger particles are deposited relatively rapidly while small particles are well mixed up to the maximum height of the afternoon boundary layer and are deposited more slowly. In other cases, a parameterization of the dust source at the surface is proposed. Model results show that smaller particles are rapidly mixed within the Martian boundary layer, while larger particles (r > 10 μm) are concentrated near the ground with a stronger diurnal cycle. In all simulations we assume that the initial concentration or surface source depend on a modified gamma function distribution. For small particles (cross-sectional area weighted mean radius, reff = 1.6 μm) distributions retain essentially the same form, though with variations in the mean and variance of the area-weighted radius, and the gamma function can be used to represent the particle size distribution reasonably well at most heights within the boundary layer. In the case of a surface source of larger particles (mean radius 50 μm) the modified gamma function does not fit the resulting particle size distribution. All results are normalised by a scaling factor that can be adjusted to correspond to an optical depth for assumed particle optical scattering properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagnold RA (1941) (revised 1954) The physics of blown sand and desert dunes. Methuen, London, 265 pp

    Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res. 67:3095–3102

    Google Scholar 

  • Chapman S, Cowling TG (1964) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge University Press, U.K. 431 pp

    Google Scholar 

  • Chassefière E, Drossart P, Korablev O (1995) Post-Phobos model for the altitude and size distribution of dust in the low Martian atmosphere. J Geophys Res 100:5525–5539

    Article  Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 pp

    Google Scholar 

  • Greeley R, Iversen JD (1985) Wind as a geological process. No. 4 in Cambridge Planetary Science Series. Cambridge Univ. Press, New York, NY, 33 pp

    Google Scholar 

  • Greeley R, Lacchia M, White B, Leach R, Trilling D, Pollack J (1994) Dust on Mars: new values for wind threshold. In XXV Lunar Planetary science Conference, pp 467–468

    Google Scholar 

  • Hong CS, Lee KH, Kim YJ, Iwasaka Y (2004) LIDAR measurements of the vertical aerosol profile and optical depth during the ACE-Asia 2001 IOP at Gosan, Jeju Island, Korea. Environ Monitor Assess 92:43–57

    Article  Google Scholar 

  • Korablev O, Moroz VI, Petrova EV, Rodin AV (2005) Optical properties of dust and the opacity of the Martian atmosphere. Adv Space Res 35:21–30

    Article  Google Scholar 

  • Larsen SE, Jørgensen HE, Landberg L, Tillman JE (2002) Aspects of the atmospheric surface layers on mars and earth. Boundary-Layer Meteorol 105:451–470

    Article  Google Scholar 

  • McKenna Neuman C (2003) Effects of temperature and humidity upon the entrainment of sedimentary particles by the wind. Boundary-Layer Meteorol 108:61–89

    Article  Google Scholar 

  • Michelangeli DV, Toon OB, Haberle RM, Pollack JB (1993) Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere. Icarus 102:261–285

    Article  Google Scholar 

  • Moudden Y, McConnell JC (2005) A new model for multiscale modeling of the Martian atmosphere, GM3. J Geophys Res 110: E04001 doi:10.1029/2004JE002354

    Article  Google Scholar 

  • Murphy JR, Toon OB, Haberle RM, Pollack JB (1990) Numerical simulations of the decay of Martian dust storms. J Geophys Res. 95:14629–14648

    Article  Google Scholar 

  • Newman CE, Lewis SRP, Read L, Forget F (2002a) Modeling the Martian dust cycle, 1, Representations of dust transport processes. J Geophys Res 107:E12–5123

    Google Scholar 

  • Newman CE, Lewis SR, Read PL, Forget F (2002b) Modeling the Martian dust cycle, 2, Multiannual radiatively active dust transport simulations. J Geophys Res 107:E12–5124

    Google Scholar 

  • Ockert-Bell ME, Bell JF, III, Pollack JB, McKay CP, Forget F (1997) Absorption and scattering properties of the Martian dust in the solar wavelengths. J Geophys Res 102:9039–9050

    Article  Google Scholar 

  • Pankine AA, Ingersoll AP (2004) Interannual variability of Mars global dust storms: an example of self-organized criticality? Icarus 170:514–518

    Article  Google Scholar 

  • Pollack JB, Ockert-Bell ME, Shepard MK (1995) Viking Lander image analysis of Martian atmospheric dust. J Geophys Res 100:5235–5250

    Article  Google Scholar 

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Kluwer Academic Publishers, Dordrecht, 976 pp

    Google Scholar 

  • Rennó NO, Nash AA, Lunine J, Murphy J (2000) Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J Geophys Res 105:1859–1865

    Article  Google Scholar 

  • Savijarvi H (1999) A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions. Quart J Roy Meteorol Soc 125:483–493

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York, 1326 pp

    Google Scholar 

  • Shao Y (2000) Physics and modelling of wind erosion. Kluwer Academic Publishers, Dordrecht, 408 pp

    Google Scholar 

  • Shao Y, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105:22437–22443

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

    Google Scholar 

  • Taylor PA, Li P-Y, Wilson JD (2002) Lagrangian simulation of suspended particles in the neutrally stratified atmospheric boundary layer. J Geophys Res 10.1029/2001 JD002049

    Google Scholar 

  • Toigo AD, Richardson MI, Ewald SP, Gierasch PJ (2003) Numerical simulation of Martian dust devils. J Geophys Res 108(E6):5047 doi:10.1029/2002 JE002002

    Article  Google Scholar 

  • Tomasko MG, Doose LR, Lemmon M, Smith PH, Wegryn E (1999) Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J Geophys Res 104:8987–9007

    Article  Google Scholar 

  • Washington R, Todd MC, Engelstaedter S, Mbainayel S, Mitchell F (2006) Dust and the low-level circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005. J Geophys Res 111: D03201, doi:10.1029/2005JD006502

    Article  Google Scholar 

  • Xiao J, Taylor PA (2002) On equilibrium profiles of suspended particles. Boundary-layer Meteorol. 105:471–482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Taylor, P.A., Li, PY., Michelangeli, D.V., Pathak, J., Weng, W. (2007). Modelling dust distributions in the atmospheric boundary layer on Mars. In: Baklanov, A., Grisogono, B. (eds) Atmospheric Boundary Layers. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74321-9_11

Download citation

Publish with us

Policies and ethics