In(Ga)As/GaAs Quantum Dots Grown by MOCVD for Opto-electronic Device Applications

  • K. Sears
  • S. Mokkapati
  • H. H. Tan
  • C. Jagadish
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 1)


Metal Organic Chemical Vapor Deposition Metalorganic Chemical Vapor Deposition Spacer Layer Thickness Increase Injection Current Growth Interrupt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hay J, Tan HH, Wong-Leung J, Jagadish C (2003) Low loss, thin p-clad 980-nm InGaAs semiconductor laser diodes with an asymmetric structure design. IEEE J. Quantum Electron. 39(5): 625–633CrossRefGoogle Scholar
  2. 2.
    Chung T, Walter G, Holonyak N Jr (2005) Growth mechanism of InAs quantum dots on GaAs by metal-organic chemical-vapor deposition. J. Appl. Phys. 97: 53510–53513CrossRefGoogle Scholar
  3. 3.
    Cockerill TM, Forbes DV, Han H Turkot BA, Dantzig JA, Robertson IM,Coleman JJ (1994) Wavelength tuning in strained layer InGaAs-GaAs-AlGaAs quantum well lasers by selective-area MOCVD. J.Electron. Mater. 23(2): 115–119CrossRefGoogle Scholar
  4. 4.
    Coldren LA, Corzine SW (1995), Diode lasers and photonic integrated circuits. John Wiley and Sons, USAGoogle Scholar
  5. 5.
    Deppe DG, Huffaker D, Csutak S, Zou Z, Park G, Shchekin OB (1999)Spontaneous emission and threshold characteristics of 1.3 μ m InGaAs-GaAs quantum-dot GaAs-based lasers. IEEE J.Quantum Electron. 35(8): 1238–1246CrossRefGoogle Scholar
  6. 6.
    Dikshit AA, Pikal JM (2004) Carrier distribution, gain, and lasing in 1.3-μ m InAs-InGaAs quantum-dot lasers. IEEE J. Quantum Electron. 40(2): 105–112CrossRefGoogle Scholar
  7. 7.
    Dingle R, Henry CH (1976) Quantum effects in heterostructure lasers.U.S. Patent (3982207)Google Scholar
  8. 8.
    El-Emawy AA, Birudavolu S, Huang S, Xu H, Huffaker DL (2003) Selective surface migration for defect-free quantum dot ensembles using metal organic chemical vapor deposition. J. Cryst. Growth 225:213–219CrossRefGoogle Scholar
  9. 9.
    Fehse R, Marko I, Adams AR (2003) Long wavelength lasers on GaAs substrates. IEE Proc.-Circuits Devices Syst. 150(6): 521–528CrossRefGoogle Scholar
  10. 10.
    Fry PW, Itskevich IE, Mowbray DJ, Skolnick MS, Finley JJ, Barker JA,O’Reilly EP, Wilson LR, Larkin IA, Maksym PA, Hopkinson M,Al-Khafaji M, David JPR, Cullis AG, Hill G, Clark JC (2000)Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys. Rev. Lett. 84,(4): 733–736CrossRefGoogle Scholar
  11. 11.
    Goldstein L, Glas F, Marzin JY, Charasse MN, Roux G Le (1985) Growth by molecular beam epitaxy ad characterization of InAs/GaAs strained-layer superlattices. Appl. Phys. Lett. 47(10): 1099–1101CrossRefGoogle Scholar
  12. 12.
    Hasegawa S, Suekand O, Takata M, Nakashima H (2003) Scanning tunneling microscopy study of GaAs overgrowth on InAs islands formed on GaAs(001). J. Cryst. Growth 251: 161–165CrossRefGoogle Scholar
  13. 13.
    Heinrichsdorff F, Krost A, Kirstaedter N, Mao M-H, Grundmann M, Bimberg D, Kosogov AO, Werner P (1997a) InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys.36(6B): 4129–4133Google Scholar
  14. 14.
    Heinrichsdorff F, Mao M-H, Kirstaedter N, Krost A, Bimberg D, Kosogov AO, Werner P (1997b) Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 71(1): 22–24CrossRefGoogle Scholar
  15. 15.
    Heinrichsdorff F, Krost A, Bimberg D, Kosogov AO, Werner P (1998) Self organized defect free InAs/GaAs and InAs/InGaAs/GaAs quantum dots with high lateral density grown by MOCVD. Appl. Surf. Sci. 123/124: 725–728CrossRefGoogle Scholar
  16. 16.
    Heinrichsdorff F, Ribbat Ch, Grundmann M, Bimberg D (2000) High-power quantum-dot lasers at 1100nm. Appl. Phys. Lett. 76(15): 5556–5558Google Scholar
  17. 17.
    Howe P, Abbey B, Le Ru EC, Murray R, Jones TS (2004) Strain interaction between InAs/GaAs quantum dot layers. Thin Solid Films 464–465:225–228CrossRefGoogle Scholar
  18. 18.
    Hsu TM, Chang W-H, Huang CC, Yeh NT, Chyi J-I (2001) Quantum-confined Stark shift in electroreflectance of InAs/InxGa1 - xAs self-assembled quantum dots. Appl.Phys. Lett. 78(12) 1760–1762Google Scholar
  19. 19.
    Joyce PB, Krzyzewski TJ, Steans PH, Bell GR, Neave JH, Jones TS (2001)Shape and surface morphology changes during the inital stages of encapsulation of InAs/GaAs quantum dots. Surf. Sci. 492: 345–353CrossRefGoogle Scholar
  20. 20.
    Kaiander I, Hopfer F, Kettler T, Pohl UW, Bimberg D (2004) Alternative precursor growth of quantum dot-based VCSELs and edge emitters for near infrared wavelengths. J. Cryst. Growth 272: 154–160CrossRefGoogle Scholar
  21. 21.
    Kamins TI, Medeiros-Ribeiro G, Ohlberg DA, Williams RS (1999) Evolution of Ge islands on Si(001) during annealing. J. Appl. Phys. 85(2): 1159–1171CrossRefGoogle Scholar
  22. 22.
    Karachinsky L Ya, Kettler T, Gordeev N Yu, Novikov II, Maximov MV,Shernyakov Yu M, Kryzhanovskaya NV, Zhukov AE, Semenova ES,Vasil’ev AP, Ustinov VM, Ledentsov NN, Kovsh AR, Shchukin VA,Mikhrin SS, Lochmann A, Schulz O, Reissmann L, Bimberg D (2005)Highpower singlemode CW operation of 1.5 μ m-range quantum dot GaAs-based laser. Electron. Lett. 41(8): 478–480CrossRefGoogle Scholar
  23. 23.
    Kirstaedter N, Ledentsov NN, Grundmann M, Bimberg D, Ustinov VM,Rumimov SS, Maximov MV, Kop’ev PS, Alferov Zh I, Richter U, Werner P, Gösele U, Heydenreich J (1994) Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron.Lett. 30(17): 1416–1417CrossRefGoogle Scholar
  24. 24.
    Kovsh AR, Maleev NA, Zhukov AE, Mikhrin SS, Vasil’ev AP, Shernyakov Yu M, Maximov MV, Livshits DA, Ustinov VM, Alferov Zh I, Ledentsov NN, Bimberg D (2002) InAs/InGaAs/GaAs quantum dot lasers of 1.3 μ m range with high (88%) differential efficiency. Electron. Lett. 38 (19): 1104–1106CrossRefGoogle Scholar
  25. 25.
    Ledentsov NN, Maximov MV, Bimberg D, Maka T, Sotomayor Torres CM,Kochnev IV, Krestnikov IL, Lantratov VM, Cherkashin NA, Musikhin Yu M, Alferov Zh I (2000) 1.3 μ m luminescence and gain from defect-free InGaAs-GaAs quantum dots grown by metal-organic chemical vapor deposition. Semicond. Sci. Technol. 15: 604–607CrossRefGoogle Scholar
  26. 26.
    Ledentsov NN, Kovsh AR, Zhukov AE, Maleev NA, Mikhrin SS,Vasil’ev AP,Semenova ES, Maximov MV, Shernyakov Yu M, Kryzhanovskaya NV,Ustinov VM, Bimberg D (2003) High performance quantum dot lasers on GaAs substrates operating in 1.5 μ m range. IEEE Photon. Technol. Lett. 39(15): 1126–1128Google Scholar
  27. 27.
    Lee H, Lowe-Webb R, Yang W, Sercel P (1997) Formation of InAs/GaAs quantum dots by molecular beam epitaxy: Reversibility of the islanding transition. Appl. Phys. Lett. 71(16): 2325–2327CrossRefGoogle Scholar
  28. 28.
    Le Ru EC, Bennett AJ, Roberts C, Murray R (2002) Strain and electronic interactions in InAs/GaAs quantum dot multilayers for 1300 nm emission. J. Appl. Phys. 91(3): 1365–1370CrossRefGoogle Scholar
  29. 29.
    Lester LF, Stintz A, Li H, Newell C, Pease EA, Fuchs BA, Malloy KJ (1999) Optical characteristics of 1.24 μ m InAs quantum-dot laser diodes. IEEE Photon. Technol. Lett. 11(8): 931–933CrossRefGoogle Scholar
  30. 30.
    Lever P, Tan HH, Jagadish C, Reece P, Gal M (2003) Proton-irradiation-induced intermixing of InGaAs quantum dots. Appl. Phys. Lett. 82:2053–2055Google Scholar
  31. 31.
    Lever P, Buda M, Tan HH, Jagadish C (2004a) Characteristics of MOCVD grown InGaAs quantum dot lasers. IEEE Photon. Technol. Lett. 16(12): 2589–2591CrossRefGoogle Scholar
  32. 32.
    Lever P, Buda M, Tan HH, Jagadish C (2004b) Investigation of the blueshift in electroluminescence spectra InGaAs quantum dots. IEEE J. Quantum Electron. 40(10): 1410–6CrossRefGoogle Scholar
  33. 33.
    Lever P, Tan HH, Jagadish C (2004c) InGaAs quantum dots grown with GaP strain compensation layers. J. Appl. Phys. 95(10): 5710–5714CrossRefGoogle Scholar
  34. 34.
    Lever P, Tan HH, Jagadish C (2004d) Impurity free vacancy disordering of InGaAs quantum dots. J. Appl. Phys. 96(12): 7544–7548CrossRefGoogle Scholar
  35. 35.
    Liu GT, Stintz A, Li H, Malloy KJ, Lester LF (1999) Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well. Electron. Lett. 35(14): 1163–1165CrossRefGoogle Scholar
  36. 36.
    Liu GT, Stintz H Li, Newell TC, Gray AL, Varangis PM, Malloy KJ, Lester LF (2000) The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures. IEEE J. Quantum Electron. 36(11): 1272–1279CrossRefGoogle Scholar
  37. 37.
    Liu HY, Hopkinson M, Harrison CN, Steer MJ, Firth R, Sellers IR,Mowbray DJ, Skolnick MS (2003) Optimizing the growth of 1.3 μ m InAs/InGaAs dots-in-a-well structure. J. Appl. Phys. 93(5): 2931–2936CrossRefGoogle Scholar
  38. 38.
    Liu HY, Sellers IR, Badcock TJ, Mowbray DJ, Skolnick MS, Groom KM,Gutiérrez M, Hopkinson M, Ng JS, David JPR, Beanland R (2004)Improved performance of 1.3 μ m multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer. Appl. Phys. Lett. 85(5): 704–706CrossRefGoogle Scholar
  39. 39.
    Matthews DR, Summers HD, Smowton PM, Hopkinson M (2002) Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers. Appl. Phys. Lett. 81(26): 4904–4906CrossRefGoogle Scholar
  40. 40.
    Maximov MV, Kochnev IV, Shernyakov YM, Zaitsev SV, Gordeev N Yu,Tsatsul’nikov AF, Sakharov AV, Krestnikov IL, Kop’ev PS, Alferov Zh I, Ledentsov NN, Bimberg D, Kosogov AO, Werner P, Gösele U (1997) InGaAs/GaAs quantum dot lasers with ultrahigh characteristic temperature (To=385K) grown by metal organic chemical vapour deposition. Jpn J. Appl. Phys. 36(6B): 4221–4223Google Scholar
  41. 41.
    Maximov MV, Tsatsul’nikov AF, Volovik BV, Sizov DS, Shernyakov Yu M,Kaiander IN, Zhukov AE, Kovsh AR, Mikhrin SS, Ustinov VM, Alferov Zh I, Heitz R, Shchukin V, Ledentsov NN, Bimberg D, Musikhin Yu G,Neumann W (2000) Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors. Phys.Rev. B 62(24): 16671–16680Google Scholar
  42. 42.
    Miao ZL, Zhang YW, Chua SJ, Chye YH, Chen P, Tripathy S (2005) Optical properties of InAs/GaAs surface quantum dots. Appl. Phys. Lett.86: 031914–031916CrossRefGoogle Scholar
  43. 43.
    Mokkapati S, Lever P, Tan HH, Jagadish C, McBean KE, Phillips MR (2005)Controlling the properties of InGaAs quantum dots by selective-area epitaxy. Appl. Phys. Lett. 86: 113102–113104 CrossRefGoogle Scholar
  44. 44.
    Mokkapati S, Tan HH, Jagadish C (2006) Integration of an InGaAs quantum dot laser with a low-loss passive waveguide using selective-area epitaxy. IEEE Photon. Technol. Lett. 18(15): 1648–1650CrossRefGoogle Scholar
  45. 45.
    Ng J, Missous M (2006) Improvements of stacked self-assembled InAs/GaAs quantum dot structures for 1.3μ m applications. Microelectronics Journal, 37(12): 1446–1450Google Scholar
  46. 46.
    Nuntawong N, Xin YC, Birudavolu S, Wong PS, Huang S, Hains CP, Huffaker DL (2005) Quantum dot lasers based on a stacked and straincompensated active region grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 86: 193115–193117CrossRefGoogle Scholar
  47. 47.
    Park G, Shchekin OB, Deppe DG (2000a) Temperature dependence of gain saturation in multilevel quantum dot lasers. IEEE J. Quantum Electron. 36(9): 1065–1071CrossRefGoogle Scholar
  48. 48.
    Park G, Shchekin OB, Huffaker DL, Deppe DG (2000b) Low-threshold oxide-confined 1.3 μ m quantum-dot laser. IEEE Photon.Technol. Lett. 13(3): 230–232Google Scholar
  49. 49.
    Passaseo A, Maruccio G, De Vittorio M, De Rinaldis S, Todaro T, Rinaldi R, Cingolani R (2001) Dependence of the emission wavelength on the internal electric field in quantum-dot laser structures grown by metal-organic chemical-vapor deposition. Appl. Phys. Lett. 79(10): 1435–1437CrossRefGoogle Scholar
  50. 50.
    Passaseo A, De Vittorio M, Todaro T, Tarantini I, Giorgi MD, Cingolani R, Taurino A, Catalano M, Fiore A, Markus A, Chen JX, Paranthoen C, Oesterle U, Ilegems M (2003) Comparison of radiative and structural properties of 1.3μ m InxGa1 - xAs quantum dot laser structures grown by metalorganic chemical vapor deposition and molecular beam epitaxy. Appl. Phys. Lett. 82(21): 3632–3643CrossRefGoogle Scholar
  51. 51.
    Pötschke K, Müller-Kirsch L, Heitz R, Sellin RL, Pohl UW,Bimberg D, Zakharov N, Werner P (2004) Ripening of self-organized InAs quantum dots. Physica E 21: 606–610Google Scholar
  52. 52.
    Qui Y, Gogna P, Forouhar S, Stintz A, Lester LF (2001) High-performance InAs quantum-dot lasers near 1.3 μ m. Appl. Phys. Lett. 79(22): 3570–3572CrossRefGoogle Scholar
  53. 53.
    Roh CH, Park YJ, Kim KM, Park YM, Kim EK, Shim KB (2001) Defect generation in multi-stacked InAs quantum dot/GaAs structures. J. Cryst. Growth 226: 1–7CrossRefGoogle Scholar
  54. 54.
    Sandall IC, Smowton PM, Walker CL, Liu HY, Hopkinson M, Mowbray DJ (2006) Recombination mechanisms in 1.3-μ m InAs quantum-dot lasers. IEEE Photon. Technol. Lett. 18(8): 965–9677CrossRefGoogle Scholar
  55. 55.
    Schmidt OG, Kirstaedter N, Ledentsov NN, Mao M-H, Bimberg D, Maximov VM, Kop’ev PS, Alferov Zh-I (1996) Prevention of gain saturation by multi-layer quantum dot lasers. Electron. Lett. 32(14): 1302–1303CrossRefGoogle Scholar
  56. 56.
    Sears K, Wong-Leung J, Buda M, Tan HH, Jagadish C (2004) Growth and characterization of InAs/GaAs quantum dots grown by MOCVD.Proceedings of the 2004 Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia,pp. 1–4CrossRefGoogle Scholar
  57. 57.
    Growth and Characterisation of Self-Assembled InAs/GaAs Quantum Dots and Optoelectronic Devices. Ph.D. thesis, The Australian National UniversityGoogle Scholar
  58. 58.
    Sears K, Buda M, Wong-Leung J, Tan HH, Jagadish C (2006a) Growth and characterization of InAs/GaAs quantum dot diode lasers.Proceedings of the 2006 International Conference On Nanoscience and Nanotechnology (ICONN), Brisbane, Australia, in pressGoogle Scholar
  59. 59.
    Sears K, Mokkapati S, Buda M, Tan HH, Jagadish C (2006b) In(Ga)As/GaAs quantum dots for optoelectronic devices”, Proceedings of the SPIE International Symposium on Smart Materials, Nano-, and Micro-Smart Systems, Adelaide, Australia, invited paper, vol. 6415, 641506Google Scholar
  60. 60.
    Sears K, Tan HH, Wong-Leung J, Jagadish C (2006c) The role of arsine in the self-assembled growth of InAs/GaAs quantum dots by metal organic chemical vapor deposition”, J Appl. Phys. 99:044908(1–5)Google Scholar
  61. 61.
    Sears K, Buda M, Tan HH, Jagadish C (2007) Modeling and characterization of InAs/GaAs quantum dot lasers grown by metal organic chemical vapor deposition. J. Appl. Phys. 101:013112(1–9)CrossRefGoogle Scholar
  62. 62.
    Sellers IR, Liu HY, Groom KM, Childs DT, Robbins D, Badcock TJ,Hopkinson M, Mowbray DJ, Skolnick MS (2004) 1.3 μ m InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density. Electron. Lett.40(22): 1412–1413CrossRefGoogle Scholar
  63. 63.
    Sellin R, Heinrichsdorff F, Ribbat Ch, Grundmann M, Pohl UW, Bimberg D (2000) Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots. J. Cryst. Growth 221: 581–585CrossRefGoogle Scholar
  64. 64.
    Sellin RL, Ribbat Ch, Grundmann M, Ledentsov NN, Bimberg D (2001)Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers. Appl. Phys. Lett. 78(9): 1207–1209CrossRefGoogle Scholar
  65. 65.
    Sellin RL, Kaiander I, Ouyang D, Kettler T, Pohl UW, Bimberg D,Zakharov ND, Werner P (2003) Alternative-precursor metalorganic chemical vapor deposition of self-organized InGaAs/GaAs quantum dots and quantum dot lasers. Appl. Phys. Lett. 82(6): 841–843CrossRefGoogle Scholar
  66. 66.
    Sheng W, Leburton J-P (2003) Absence of correlation between built-in electric dipole moment and quantum stark effect in single InAs/GaAs self-assembled quantum dots. Phys. Rev. ,B 67:125308 (1–4).Google Scholar
  67. 67.
    Shiramine K, Horisaki Y, Suzuki D, Itoh S, Ebiko Y, Muto S, Nakata Y,Yokoyama N (1999) TEM observation of threading dislocations in InAs self assembled quantum dot structure. J. Cryst. Growth 205:461–466CrossRefGoogle Scholar
  68. 68.
    Shoji H, Nakata Y, Mukai K, Sugiyama Y, Sugawara M, Yokoyama NY,Ishikawa H (1997) Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer. IEEE J. Select.Topics Quantum Electron. 3(2): 188–195CrossRefGoogle Scholar
  69. 69.
    Smowton PM, Herrmann E, Ning Y, Summers HD, Blood P, Hopkinson M (2001)Optical mode loss and gain of multiple-layer quantum-dot lasers. Appl. Phys. Lett. 78(18): 2629–2631CrossRefGoogle Scholar
  70. 70.
    Solomon GS, Trezza JA, Marshall AF, Harris Jr. JS (1996) Vertically aligned and electronically coupled growth induced InAs islands in GaAs. Phys. Rev. Lett. 76(6): 952–955CrossRefGoogle Scholar
  71. 71.
    Songmuang R, Kiravittaya S, Schmidt OG (2003) Shape evolution of InAs quantum dots during overgrowth. J. Cryst. Growth 249: 416–421CrossRefGoogle Scholar
  72. 72.
    Steimetz E, Richter W, Schienle F, Fischer D, Klein M, Zettler J-T (1997) The effect of different group V precursors on the evolution of quantum dots monitored by optical in situ measurements. Jpn. J. Appl. Phys. 37(Part 1(3B)): 1483–1486Google Scholar
  73. 73.
    Steimetz E, Wehnert T, Kirmse H, Poser F, Zettler J-T, Neumann W,Richter W (2000) Optimizing the growth procedure for InAs quantum dot stacks by optical in situ techniques. J. Cryst. Growth 221:592–598CrossRefGoogle Scholar
  74. 74.
    Stewart K, Wong-Leung J, Tan HH, Jagadish C (2003) Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector, J. Appl. Phys. 94(8): 5283–5289CrossRefGoogle Scholar
  75. 75.
    Stewart K, Barik S, Buda M, Tan HH, Jagadish C (2005a) InAs quantum dots for optoelectronic device applications. Proceedings of the 2005 Materials Research Society (MRS) Fall Meeting, Boston, USA,invited paper, vol. 829, B3.4.1Google Scholar
  76. 76.
    Stewart K, Wong-Leung J, Tan HH, Jagadish C (2005b) InAs quantum dots grown on InGaAs buffer layers by metal-organic chemical vapor deposition. Journal of Crystal Growth, 281: 290–296Google Scholar
  77. 77.
    Stintz A, Liu GT, Gray L, Spillers R, Delgado SM, Malloy KJ (2000)Characterization of InAs quantum dots in strained InxGa1 - xAs quantum wells. J. Vac. Sci. Technol. 18(3): 1496–1501CrossRefGoogle Scholar
  78. 78.
    Stringfellow GB (1999) Organometallic Vapor-Phase Epitaxy. Academic Press, San Diego, USA, second ednGoogle Scholar
  79. 79.
    Sugiyama Y, Nakata Y, Futatsugi T, Sugawara M, Awano Y, Yokoyama N (1997) Narrow photoluminescence line width of closely stacked InAs self-assembled quantum dot structures. Jpn. J. Appl. Phys. 36(2A): L158–161Google Scholar
  80. 80.
    Sze SM (1985) Semiconductor Devices: Physics and Technology. John Wiley and Sons, SingaporeGoogle Scholar
  81. 81.
    Tan HH, Sears K, Mokkapati S, Fu L, Kim Y, McGowan P, Buda M, Jagadish C (2007) Quantum dots and nanowires for optoelectronic device applications. Invited paper, IEEE J Select. Topics Quantum Electron. 12(6): 1242–1254Google Scholar
  82. 82.
    Tatebayashi J, Nishioka M, Arakawa Y (2001) Over 1.5 μ m emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition. Appl. Phys. Lett.78(22): 3469–3471CrossRefGoogle Scholar
  83. 83.
    Tatebayashi J, Hatori N, Kakuma H, Ebe H, Sudo H, Kuramata A, Nakata Y,Sugawara M, Arakawa Y (2003) Low threshold current operation of self-assembled InAs/GaAs quantum dot lasers by metal organic chemical vapour deposition. Electron. Lett. 39(15): 1131–1133CrossRefGoogle Scholar
  84. 84.
    Tatebayashi J, Hatori N, Ishida M, Ebe H, Sugawara M, Arakawa Y, Sudo H, Kuramata A (2005) 1.28 μ m lasing from stacked InAs/GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition. Appl. Phys. Lett.86: 053107–053109CrossRefGoogle Scholar
  85. 85.
    Tatebayashi J. Nuntawong N. Xin YC. Wong PS. Huang SH. Hains CP. Lester LF. Huffaker DL (2006) Ground-state lasing of stacked InAs/GaAs quantum dots with GaP strain-compensation layers grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 88(22): 221107(1–3)CrossRefGoogle Scholar
  86. 86.
    Tersoff J, Teichert C, Lagally MG (1996) Self-organization in growth of quantum dot superlattices. Phys. Rev. Lett. 76(10): 1675–1678CrossRefGoogle Scholar
  87. 87.
    Ustinov VM, Maleev NA, Zhukov AE, Kovsh AR, Egorov A Yu, Lunev AV,Volovik BV, Krestnikov IL, Musikhin Yu G, Bert NA, Kop’ev PS,Alferov Zh I, Ledentsov NN, Bimberg D (1999) InAs/GaAs quantum dot structures on GaAs substrates emitting at 1.3 μ m. Appl. Phys. Lett. 74 (19): 2815–2817CrossRefGoogle Scholar
  88. 88.
    Ustinov VM, Zhukov AE, Egorov A YU, Maleev NA (2003) Quantum Dot Lasers. Oxford Science Publications, Oxford, UK, first ednGoogle Scholar
  89. 89.
    Walter G, Chung T, Holonyak-Jr N (2002) High-gain coupled InGaAs quantum well InAs quantum dot AlGaAs-GaAs-InGaAs-InAs heterostructure diode laser operation. Appl. Phys. Lett. 80(7): 1126–1128CrossRefGoogle Scholar
  90. 90.
    Xie Q, Madhukar A, Chen P, Kobayashi NP (1995) Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75(13): 2542–2545CrossRefGoogle Scholar
  91. 91.
    Yang T, Tatebayashi J, Tsukamoto S, Nishioka M, Arakawa Y (2004) Narrow photoluminescence linewidth (<17 meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 84(15): 2817–2819CrossRefGoogle Scholar
  92. 92.
    Yeh N-T, Nee T-E, Chyi J-I, Hsu TM, Huang CC (2000) Matrix dependence of strain-induced wavelength shift in self-assembled InAs quantum-dot heterostructures. Appl. Phys. Lett. 76(12): 1567–1569CrossRefGoogle Scholar
  93. 93.
    Zhukov AE, Kovsh AR, Maleev NA, Mikhrin SS, Ustinov VM, Tsatsul’nikov AF, Maximov MV, Volovik BV, Bedarev DA, Shernyakov Yu M, Kop’ev PS, Alferov ZH I, Ledentsov NN, Bimberg D (1999a) Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates. Appl. Phys. Lett. 75(13): 1926–1928CrossRefGoogle Scholar
  94. 94.
    Zhukov AE, Kovsh AR, Ustinov VM, Shernyakov Yu M, Mikhrin SS, Maleev NA, Kondrat’eva E Yu, Livshits DA, Maximov MV, Volovik BV, Bedarev DA, Musikhin Yu G, Ledentsov NN, Kop’ev PS, Alferov Zh I, Bimberg D (1999b) Continuous-wave operation of long-wavelength quantum-dot diode laser on a GaAs substrate. IEEE Photon. Technol. Lett. 11(11): 1345–1347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Sears
  • S. Mokkapati
  • H. H. Tan
  • C. Jagadish

There are no affiliations available

Personalised recommendations