Skip to main content

Stress Relaxation Phenomena in Buried Quantum Dots

  • Chapter
Self-Assembled Quantum Dots

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akinaga H, Mizuguchi M, Ono K, Oshima M (2000) Room-temperature thousandfold magnetoresistance change in MnSb granular films: Magnetoresistive switch effect. Applied Physics Letters 76: 357–359

    Article  CAS  Google Scholar 

  2. Andreev AD, Downes JR, Faux DA, O’Reilly EP (1999) Strain distributions in quantum dots of arbitrary shapes. Journal of Applied Physics 86: 297–305

    Article  CAS  Google Scholar 

  3. Andreev AD, O’Reilly EP (2000) Theoretical study of the electronic structure of self-organized GaN/AlN QDs. Nanotechnology 11: 256–262

    Article  CAS  Google Scholar 

  4. Beanland R, Dunstan DJ, Goodhew PJ (1996) Plastic relaxation and relaxed buffer layers for semiconductor energy. Advances in Physics, 45: 87–146

    Article  CAS  Google Scholar 

  5. Bert NA, Chaldyshev VV (1996) Changes in the Moire patterns in electron-microscope images of As clusters in LT-GaAs as their size decreases. Semiconductors 30: 988–989

    Google Scholar 

  6. Bert NA, Chaldyshev VV, Faleev NN, Kunitsyn AE, Lubyshev DI, Preobrazhenskii VV, Semyagin BR, Tret’yakov VV (1997) Two-dimensional precipitation of As clusters due to indium delta-doping of GaAs films grown by molecular beam epitaxy at low temperature. Semiconduct. Science and Technology 12: 51–54

    Article  CAS  Google Scholar 

  7. Bert NA, Chaldyshev VV, Suvorova AA, Preobrazhenskii VV, Putyato MA, Semyagin BR, Werner P (1999) Enhanced precipitation of excess As on antimony delta layers in low-temperature-grown GaAs. Applied Physics Letters 74: 1588–1590

    Article  CAS  Google Scholar 

  8. Bert NA, Kolesnikova AL, Romanov AE, Chaldyshev VV (2002) Elastic behaviour of a spherical inclusion with given uniaxial dilatation. Physics of the Solid State 44: 2240–2250

    Google Scholar 

  9. Bert NA, Veinger AI, Vilisova MD, Goloshchapov SI, Ivonin IV, Kozyrev SV, Kunitsyn AE, Lavrent’eva LG, Lubyshev DI, Preobrazhenskii VV, Semyagin BR, Tretyakov VV, Chaldyshev VV, Yakubenya MP (1993) Gallium-arsenide grown by molecular-beam epitaxy at low temperature: crystalline structure, properties, superconductivity. Physics of the Solid State 35: 1289–1297

    Google Scholar 

  10. Bimberg D, Grundmann M, Ledentsov NN, Ruvimov SS, Werner P, Richter U, Gösele U, Heydenreich J, Ustinov VM, Kop’ev PS, Alferov ZI (1995) Self-organization processes in MBE-grown quantum dot structures. Thin Solid Films 267: 32–36

    Article  CAS  Google Scholar 

  11. Chaldyshev VV (2002) Two-dimensional organization of As clusters in GaAs. Materials Science & Engineering B 88: 85–94

    Article  Google Scholar 

  12. Chaldyshev VV, Bert NA, Musikhin YG, Suvorova AA, Preobrazhenskii VV, Putyato MA, Semyagin BR, Werner P, Gosele U (2001) Enhanced As-Sb intermixing of GaSb monolayer superlattice in low-temperature-grown GaAs. Applied Physics Letters 79: 1294–1296

    Article  CAS  Google Scholar 

  13. Chaldyshev VV, Bert NA, Romanov AE, Suvorova AA, Kolesnikova AL, Preobrazhenskii VV, Putyato MA, Semyagin BR, Werner P, Zakharov ND, Claverie A (2002) Local stresses induced by nanoscale As-Sb clusters in GaAs matrix. Applied Physics Letters 80: 377–379

    Article  CAS  Google Scholar 

  14. Chaldyshev VV, Kolesnikova AL, Bert NA, Romanov AE (2005) Investigation of dislocation loops with As-Sb nanoclusters in GaAs. Journal of Applied Physics 97: 024309(1-10)

    Article  CAS  Google Scholar 

  15. Chiu YP (1977) On the stress field due to initial strain in a cuboid surrounded by an infinite elastic space. Journal of Applied Mechanics 44: 587–590

    Google Scholar 

  16. Chu SNG and Nakahara S (1990) 100 100 dislocation loops in zinc blend structure. Applied Physics Letters 56: 434–436

    Article  Google Scholar 

  17. Claverie A, Liliental-Weber Z (1993) Extended defects and precipitates in LT-GaAs, LT-InAlAs and LT-InP. Material Science and Engineering B 22: 45–54

    Google Scholar 

  18. DeBoeck J, Oesterholt R, VanEsch A, Bender H, Bruynseraede C, VanHoof C, Borghs G (1996) Nanometer-scale magnetic MnAs particles in GaAs grown by molecular beam epitaxy. Applied Physics Letters 68: 2744–2746

    Article  CAS  Google Scholar 

  19. Devis JH (1998) Elastic and piezoelectric fields around a buried quantum dot: a simple picture. Journal of Applied Physics 84: 1358–1365

    Article  Google Scholar 

  20. Dregia SA, Hirth, JP (1991) A rebound mechanism for Lomer dislocation formation in strained layer structures. Journal of Applied Physics 69: 2169–2175

    Article  CAS  Google Scholar 

  21. Duan HL, Karihaloo BL, Wang J, Yi X (2006) Compatible composition and critical sizes of alloyed quantum dots. Physical Review B 74: 195328(4)

    Google Scholar 

  22. Duan HL, Wang J, Huang ZP (2005) Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society of London A 461: 3335–3353

    Google Scholar 

  23. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion. Proceedings of the Royal Society of London A 241: 376–396

    Google Scholar 

  24. Eshelby JD (1959) The elastic field outside in ellipsoidal inclusion. Proceedings of the Royal Society of London A 252: 561–569

    Article  Google Scholar 

  25. Faleev NN, Chaldyshev VV, Kunitsyn AE, Tret’yakov VV, Preobrazhenskii VV, Putyato MA, Semyagin BR (1998) High-resolution x-ray diffraction study of InAs-GaAs superlattices grown by molecular-beam epitaxy at low temperature. Semiconductors 32: 19–25

    Article  Google Scholar 

  26. Fischer FD, Böhm HJ (2005) On the role of the transformation eigenstrain in the growth or shrinkage of spheroidal isotropic precipitations. Acta Materialia 53: 367–374

    Article  CAS  Google Scholar 

  27. Fischer FD, Böhm HJ, Oberaigner ER, Waitz T (2006) The role of elastic contrast on strain energy and the stresses state of a spheroidal inclusion with a general eigenstrain state. Acta Materialia 54: 151–156

    Article  CAS  Google Scholar 

  28. Freund LB, Suresh S (2003) Thin film materials: Stress, defect formation and surface evolution. Cambrige University Press, Cambridge

    Google Scholar 

  29. Glas F (2001) Elastic relaxation of truncated pyramidal quantum dots and quantum wires in a half space: An analytical calculation. Journal of Applied Physics 90: 3232–3241

    Article  CAS  Google Scholar 

  30. Goodier JN (1937) On the integration of the thermo-elastic equations. Philosophical Magazine 23: 1017–1032

    Google Scholar 

  31. Guha S, Madhukar A, Rajkumar KC (1990) Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained In_xGa1 - xAs on GaAs(100) Applied Phys.ics Letters 57: 2110–2112

    Article  CAS  Google Scholar 

  32. Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New-York

    Google Scholar 

  33. Jin-Phillipp NY, Phillipp F (1999) Defect formation in self-assembling quantum dots of InGaAs on GaAs: a case study of direct measurements of local strain from HREM. Journal of Microscopy 194: 161–170

    Article  CAS  Google Scholar 

  34. Jogai B (2001) Tree-dimensional strain field calculations in multiple InN/AlN wurzite quantum dots. Journal of Applied Physics 90: 699–704

    Article  CAS  Google Scholar 

  35. Kolesnikova AL, Romanov AE (1986) Circular dislocation-disclination loops and their application to boundary problem solution in the theory of defects. Physico-Technical Institute Preprint No 1019, Leningrad (in Russian)

    Google Scholar 

  36. Kolesnikova AL, Romanov AE (1987) Edge dislocation perpendicular to the surface of a plate. Soviet Technical Physics Letters 3: 272–274

    Google Scholar 

  37. Kolesnikova AL, Romanov AE (2004a) Virtual circular dislocation-disclination loop technique in boundary value problems in the theory of defects. Journal of Applied Mechanics 71: 409–417

    Article  Google Scholar 

  38. Kolesnikova AL, Romanov AE (2004b) Misfit dislocation loops and critical parameters of quantum dots and wires. Philosophical Magazine Letters 84: 043510(1–4)

    Article  CAS  Google Scholar 

  39. Kolesnikova AL, Romanov AE, Chaldyshev VV (2007) Elastic-energy relaxation in heterostructures with strained nanoinclusions. Physics of the Solid State 49: 667–674

    Article  CAS  Google Scholar 

  40. Krotkus A, Coutaz JL (2005) Non-stoichiometric semiconductor materials for terahertz optoelectronics applications. Semiconductor Science and Technology 20: S142–S150

    Article  CAS  Google Scholar 

  41. Kurtenbach A, Eberl K, and Shitara T (1995) Nanoscale InP islands embedded in InGaP. Applied Physics Letters 66: 361–363

    Article  CAS  Google Scholar 

  42. Lavrent’eva LG, Vilisova MD, Preobrazhenskii VV, Chaldyshev VV (2002) Low-temperature molecular-beam epitaxy of GaAs: effect of excess arsenic on the structure and properties of the GaAs layers. Russian Physics Journal 45: 735–752

    Article  CAS  Google Scholar 

  43. Ledentsov NN, Bohrer J, Bimberg D, Kochnev IV, Maximov MV, Kop’ev PS, Alferov ZhI, Kosogov AO, Ruvimov SS, Werner P, Gosele U (1996) Formation of coherent superdots using metal-organic chemical vapor deposition. Applied Physics Letters 69: 1095–1097

    Article  CAS  Google Scholar 

  44. LeGoues F K, Tersoff J, Reuter MC, Hammar M, Tromp R (1995) Relaxation mechanism of Ge islands/Si(001) at low temperature. Applied Physics Letters 67: 2317–2319

    Article  CAS  Google Scholar 

  45. Liu X, Prasad A, Nishio J, Weber ER, Liliental-Weber Z, Walukiewicz W (1995) Native point defects in low-temperature-grown GaAs. Applied Physics Letters 67: 279–281

    Article  CAS  Google Scholar 

  46. Liu Y, Cao YG, Wu HS, Xie MH (2005) Coherent and dislocated three-dimensional islands of In_xGa1 - xN self-assembled on GaN(0001) during molecular-beam Epitaxy. Physical Review B 71: 153406 (1–4)

    Google Scholar 

  47. Luysberg M, Sohn H, Prasad A, Specht P, Liliental-Weber Z, Weber ER, Gebauer J, Krause-Rehberg R (1998) Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs. Jornal of Applied Physics 83: 561–566

    Article  CAS  Google Scholar 

  48. Martin GM (1981) Optical assessment of the main electron trap in bulk semi-insulating GaAs. Applied Physics Letters 39: 747–749

    Article  CAS  Google Scholar 

  49. Merdzhanova T, Kiravittaya S, Rastelli A, Stoffel M, Denker U, and Schmidt OG (2006) Dendrochronology of strain-relaxed islands. Physical Review Letters 96: 226103

    Article  CAS  Google Scholar 

  50. Mindlin RD, Cheng DH (1950) Thermoelastic stress in the semi-infinite solid. Journal of Applied Physics 21: 931–933

    Article  Google Scholar 

  51. Moreno M, Kaganer VM, Jenichen B, Trampert A, Daweritz L, Ploog KH (2005) Micromechanics of MnAs nanocrystals embedded in GaAs. Physical Review B 72: 115206

    Google Scholar 

  52. Moreno M, Trampert A, Daweritz L, Ploog KH (2004) MnAs nanoclusters embedded in GaAs: synthesis and properties. Applied Surface Science 234: 16–21

    Article  CAS  Google Scholar 

  53. Mura T (1987) Micromechanics of defects in solids. Martinus Nijhoff, Dordrecht

    Google Scholar 

  54. Onaka S (2001) Averaged Eshelby tensor and elastic strain energy of a super spherical inclusion with uniform eigenstrains. Philosophical Magazine Letters 81: 265–272

    Article  CAS  Google Scholar 

  55. Onaka S, Sato H, Kato M (2002) Elastic states of doughnut-like inclusions with uniform eigenstrains treated by averaged Eshelby tensors. Philosophical Mahazine Letters 82: 1–7

    Article  CAS  Google Scholar 

  56. Romanov AE, Beltz GE, Fischer WT, Petroff PM, Speck JS (2001) Elastic fields of quantum dots in subsurface layers. Journal of Applied Physics 89: 4523–4531

    Article  CAS  Google Scholar 

  57. Romanov AE, Waltereit P, Speck JS (2005) Buried stressors in nitride semiconductors:influence in electronic properties. Journal of Applied Physics 97: 043708(1–13)

    Google Scholar 

  58. Shimogishi F, Mukai K, Fukushima S, Otsuka N (2002) Hopping conduction in GaAs layers grown by molecular-beam epitaxy at low temperatures. Physical Review B 65: 165311(1–5)

    Google Scholar 

  59. Schwartzman AF, Sinclair R (1991) Metastable and equilibrium defect structure of II-VI/GaAs interfaces. Journal of Electronic Materials 20: 805–814

    Article  CAS  Google Scholar 

  60. Shchukin VA, Bimberg D (1999) Spontaneous ordering of nanostructures on crystal surfaces. Reviews of Modern Physics 71: 1125–1171

    Article  CAS  Google Scholar 

  61. Shchukin VA, Ledentsov NN, Bimberg D (2002a) Epitaxy of Nanostructures. Springer, Berlin

    Google Scholar 

  62. Shchukin VA, Ledentsov NN, Bimberg D (2002b) Entropy effects in the self-organized formation of nanostructures. In: Kotrla M, Papanicolaou NI, Vvedensky DD (eds) Atomistic Aspects of Crystal Growth”, Kluwer, New-York, pp 397–409

    Google Scholar 

  63. Sears K, Wong-Leung J, Tan HH, Jagadish C (2006) A transmission electron microscopy study of defects formed through the capping layer of self-assembled InAs/GaAs quantum dot samples. Journal of Applied Physics 99: 113503 (1–8)

    Google Scholar 

  64. Seo K, Mura T (1979) The elastic field in a half space due to ellipsoidal inclusions with uniform dilatational eigenstrains. Journal of Applied Mechanics 46: 568–572

    Google Scholar 

  65. Stangl J, Holy V, Bauer G (2004) Structural properties of self-organized semiconductors nanostructures. Reviews of Modern Physics 76: 725–783

    Article  CAS  Google Scholar 

  66. Stewart K, Buda M, Wong-Leung J, Fu L, Jagadish C, Stiff-Roberts A, Bhattacharya P (2003) Influence of rapid thermal annealing on a 30 stack InAsÕGaAs quantum dot infrared photodetector. Journal of Applied Physics 94: 5283–5289

    Article  CAS  Google Scholar 

  67. Tanaka K, Mori T (1972) Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity 2: 199–200

    Article  Google Scholar 

  68. Teodosiu C (1982) Elastic models of crystal defects. Springer, Berlin

    Google Scholar 

  69. Tichert C (2002) Self-organisation of nanostructures in semiconductor heteroepitaxy. Physics Reports 365: 335–432

    Article  Google Scholar 

  70. Toropov AA, Lyublinskaya OG, Meltser BYa, Solov’ev VA, Sitnikova AA, Nestoklon MO, Rykhova OV, Ivanov SV, Thonke K, Sauer R (2004) Tensile-strained GaAs quantum wells and quantum dots in a GaAs_xSb1 - x matrix. Physical Review B 70: 205314(1-8)

    Article  CAS  Google Scholar 

  71. Tsuchida E, Arai Y, Nakazawa K, Jasiuk I. (2000) The elastic stress field in half-space containing a prolate spheroidal inhomogeneity to pure shear eigenstrain. Materials Science and Engineering A 285: 338–344

    Google Scholar 

  72. Vasyukov DA, Baidakova M.V, Chaldyshev VV, Suvorova AA, Preobrazhenskii VV, Putyato MA, Semyagin BR (2001) Structural transformations in low-temperature grown GaAs:Sb. Journal of Phys.ics D: Applied Physics 34: A15–A18

    Article  CAS  Google Scholar 

  73. Wang YQ, Wang ZL, Shen JJ, Brown A (2003) Effect of dissimilar anion annealing on structures of InAs/GaAs quantum dots. Journal of Crystal Growth 252: 58–67

    Article  CAS  Google Scholar 

  74. Wu LZ, Du SY (1995a) The elastic field caused by a circular cylindrical inclusion. 1. Inside the region x1 2+ x2 2<a2, -∞ < x3<∞ where the circular cylindrical inclusion is expressed by x1 2+x2 2 < a2, -h< x3<h. Journal of Applied Mechanics 62: 579–584

    Google Scholar 

  75. Wu LZ, Du SY (1995b). The elastic field caused by a circular cylindrical inclusion. 2. Inside the region x1 2+x2 2>a2, -∞<x3<∞ where the circular cylindrical inclusion is expressed by x1 2+ x2 2<a2, -h<x3< h. Journal of Applied Mechanics 62: 585–589

    Google Scholar 

  76. Wu LZ, Du SY (1999) The elastic field with a hemispherical inclusion. Proceedings of the Royal Society of London A 455: 879–891

    Google Scholar 

  77. Yoffe EH (1974) Calculation of elastic strain-spherical particle in a cubic material, Philosophical magazin 30: 923–933

    Article  CAS  Google Scholar 

  78. Yu HY, Sandy SC (1992) Center of dilatation and thermal stresses in an elastic plate. Proceedings of the Royal Society of London A 438: 103–112

    Google Scholar 

  79. Yu KM, Kaminska M, Liliental-Weber Z (1992) Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques. Journal of Applied Physics 72: 2850–2856

    Article  CAS  Google Scholar 

  80. Zakharov ND, Werner P, Gösele U, Ledentsov NN, Bimberg D, Cherkashin NA, Bert NA, Volovik BV, Ustinov VM, Maleev NA, Zhukov AE, Tsatsul’nikov AF (2001) Reduction of defect density in structures with InAs-GaAs quantum dots grown at low temperature for 1.55 μ m range. Material Research Society Symposium Proceedings 672: O8.5.1–O8.5.6

    CAS  Google Scholar 

  81. Zou J, Liao XZ, Cockayne DJH, Jiang ZM (2002) Alternative mechanism for misfit dislocation generation during high temperature Ge(Si)/Si (001) island growth. Applied Physics Letters 81: 1996–1998

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bert, N., Chaldyshev, V., Kolesnikova, A., Romanov, A. (2008). Stress Relaxation Phenomena in Buried Quantum Dots. In: Wang, Z.M. (eds) Self-Assembled Quantum Dots. Lecture Notes in Nanoscale Science and Technology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74191-8_10

Download citation

Publish with us

Policies and ethics