Skip to main content

Optical Anisotropy of Semiconductor Nanowires

  • Chapter
One-Dimensional Nanostructures

Abstract

Semiconductor nanowires are novel nanostructures full of promise for optical applications. Nanowires have subwavelength diameters and large aspect ratios, which combined with the high permittivity of semiconductors lead to a strong optical anisotropy. We review in this chapter this optical anisotropy, focusing on the polarization anisotropy of the photoluminescence of individual nanowires and the propagation of light through birefringent ensembles of aligned nanowires.

Recent developments in bottom-up nanofabrication techniques allow the growth of free-standing semiconductor nanowires with controlled composition, lateral dimensions of typically 10–100 nm, and lengths of several micrometers (see Fig. 6.1). The small lateral dimensions of nanowires enables to grow them heteroepitaxially onto different substrates [1–3] or even to design heterostructures with segments, shells, and/or quantum dots of different semiconductors in a single nanowire [4–8]. Nanowires are full of promise for monolithic integration of high-performance semiconductors with new functionality [8–11] into existing silicon technology [2, 3, 12]. These nanostructures will offer new possibilities as next generation of optical and optoelectronical components. Junctions in semiconductor nanowires and light emitting devices have been demonstrated [4, 13–17]. Although the quantum efficiency of these nano-LEDs is still low, fast progress is being made on the passivation of the nanowire surface and the increase of their efficiency [18, 19]. Also, optically and electrically driven nanowire lasing have been reported [9, 20, 21]. Nanowires have been proposed as polarization sensitive photodetectors [22, 23] and as a source for single photons [8, 24].

The encouraging perspectives for novel applications has lead to improved control over nanowire synthesis and materials composition [4, 5, 25–27]. However, little is known about how light is emitted by individual nanowires or how light is scattered by ensembles of these nanostructures. The large geometrical anisotropy of nanowires and the high refractive index of semiconductors give rise to a huge optical anisotropy, which has been reported as a strongly polarized photoluminescence of individual nanowires along their long axis [22, 28]. In this chapter we review the polarization anisotropy in the photoluminescence of individual nanowires. We also describe the propagation of light through ensembles of nanowires oriented perpendicularly to the surface of a substrate. The controlled growth and alignment of the nanowires leads to a medium with giant birefringence [29], i.e., a medium with a large difference in refractive indexes for different polarizations. The giant birefringence in ensembles of nanowires can be easily tuned by changing the semiconductor filling fraction and is not restricted to narrow frequency bands as in periodic structures [30]. Broadband and giant birefringence constitutes an elegant example of the extreme optical anisotropy of nanowires, which may lead to nanoscale polarization controlling media [31], the efficient generation of nonlinear signals [32], and the observation of novel surface electromagnetic modes on birefringent materials [33].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Yazawa, M. Koguchi, K. Hiruma: Appl. Phys. Lett. 58, 1080 (1991).

    Article  ADS  CAS  Google Scholar 

  2. T. Martensson, et al: Nano Lett. 4, 1987 (2004).

    Article  ADS  CAS  Google Scholar 

  3. E.P. Bakkers, et al: Nat. Mater. 3, 769 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber: Nature 415, 617 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  5. M.T. Bjork, et al: Nano Lett. 2, 87 (2002).

    Article  ADS  CAS  Google Scholar 

  6. D.Y. Li, Y. Wu, R. Fan, P.D. Yang, A. Majumdar: Appl. Phys. Lett. 83, 3186 (2003).

    Article  ADS  CAS  Google Scholar 

  7. L.J. Lauhon, M.S. Gudiksen, C.L. Wang, C.M. Lieber: Nature 420, 57 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  8. M.T. Borgstr\ddot{o}m, V. Zwiller, E. Müller, A. Imamoglu: Nano Lett. 5, 1439 (2005).

    Article  ADS  CAS  Google Scholar 

  9. J.C. Johnson, et al: Nature Mat. 1, 106 (2002).

    Article  ADS  CAS  Google Scholar 

  10. G.F. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber: Nature Biotechnology 23, 1294–1301 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. J.A. van Dam, Y.V. Nazarov, E.P.A.M. Bakkers, S. De Franceschi, L.P. Kouwenhoven: Nature 442, 667 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  12. T.I. Kamins, X. Li, R.S. Williams: Nano Lett. 4, 503 (2004).

    Article  ADS  CAS  Google Scholar 

  13. K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa: Appl. Phys. Lett. 60, 745 (1992).

    Article  ADS  CAS  Google Scholar 

  14. H.M. Kim, et al: Nano Lett. 4, 1059 (2004).

    Article  ADS  CAS  Google Scholar 

  15. J.M. Bao, M.A. Zimmler, F. Capasso, X.W. Wang, Z.F. Ren: Nano Lett. 6, 1719 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  16. F. Qian, S. Gradecak, Y. Li, C.Y. Wen, C.M. Lieber: Nano Lett. 5, 2287 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  17. E.D. Minot, et al: Nano Lett. 7, 367 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  18. L.K. van Vugt, S.J. Veen, E.P.A.M. Bakkers, A.L. Roest, D. Vanmaekelbergh: J. Am. Chem. Soc. 127, 12357 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, E.I. Kauppinen: Appl. Phys. Lett. 90, 033101 (2007).

    Article  ADS  CAS  Google Scholar 

  20. M.H. Huang, et al: Science 292, 1897 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  21. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber: Nature 421, 241 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  22. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber: Science 293, 1455 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  23. H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang: Adv. Mat. 14, 158 (2002).

    Article  CAS  Google Scholar 

  24. N. Panev, A.I. Persson, N. Skold, L. Samuelson: Appl. Phys. Lett. 83, 2238 (2003).

    Article  ADS  CAS  Google Scholar 

  25. Y.Y. Wu, R. Fan, P.D. Yang: Nano Lett. 2, 83 (2002).

    Article  ADS  CAS  Google Scholar 

  26. J. Goldberger, A.I. Hochbaum, R. Fan, P.D. Yang: Nano Lett. 6, 973 (2006).

    Article  ADS  CAS  Google Scholar 

  27. M.T. Borgström, M.A. Verheijen, G. Immink, T. de Smet, E.P.A.M. Bakkers: Nanotechnol. 17, 4010 (2006).

    Article  ADS  CAS  Google Scholar 

  28. J. Qi, A.M. Belcher, J.M. White: Appl. Phys. Lett. 82, 2616 (2003).

    Article  ADS  CAS  Google Scholar 

  29. O.L. Muskens, M.T. Borgström, E.P.A.M. Bakkers, J. Gómez Rivas: Appl. Phys. Lett. 89, 233117 (2006).

    Article  ADS  CAS  Google Scholar 

  30. R.-C. Tyan, et al: J. Opt. Soc. Am. A 14, 1627 (1997).

    Article  ADS  Google Scholar 

  31. M. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, T. Krauss: Opt. Express 13, 5040 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  32. M.J.A. de Dood, W.T.M. Irvine, D. Bouwmeester: Phys. Rev. Lett. 93, 040504 (2005).

    Article  CAS  Google Scholar 

  33. D. Artigas, L. Torner: Phys. Rev. Lett. 94, 013901 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  34. R.S. Wagner, W.C. Ellis: Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  CAS  Google Scholar 

  35. E.I. Givargizov: J. Crystal Growth 31, 20 (1975).

    Article  ADS  CAS  Google Scholar 

  36. K. Hiruma, H. Murakoshi, M. Yazawa, T. Katsuyama: J. Crystal Growth 163, 226 (1996).

    Article  ADS  CAS  Google Scholar 

  37. K. Hiruma, et al: J. Appl. Phys. 77, 447–462 (1995).

    Article  ADS  CAS  Google Scholar 

  38. K. Haraguchi, K. Hiruma, K. Hosomi, M. Shirai, T. Katsuyama: J. Vac. Sci. Technol. B 15, 1685 (1997).

    Article  CAS  Google Scholar 

  39. A.K. Viswanath, K. Hiruma, M. Yazawa, K. Ogawa, T. Katsuyama: Microwave and Opt. Technol. Lett. 7, 94 (1994).

    Article  ADS  Google Scholar 

  40. Born, Wolf: Principles of Optics (Cambridge University Press, Cambridge 1997) pp 4–7.

    Google Scholar 

  41. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii: Electrodynamics of Continuous Media (Elsevier Butterworth Heinemann, Amsterdam 2004) pp 39–40.

    Google Scholar 

  42. H.E. Ruda, S. Shik: Phys. Rev. B 72, 115308 (2005).

    Article  ADS  CAS  Google Scholar 

  43. C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, Weinheim 2004).

    Google Scholar 

  44. A. Ishimaru: Wave Propagation and Scattering in Random Media (Academic Press, New York 1978).

    Google Scholar 

  45. P. Sheng: Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, New York 1995).

    Google Scholar 

  46. Hecht: Optics (Addison Wesley, San Francisco 2002) pp 336–344.

    Google Scholar 

  47. D.J. Bergman, D. Stroud: Solid State Phys. 46, 197 (1992).

    Google Scholar 

  48. A. Kirchner, K. Busch, C.M. Soukoulis: Phys. Rev. B 57, 277 (1998).

    Article  ADS  CAS  Google Scholar 

  49. F. Genereux, S.W. Leonard, H.M. van Driel, A. Birner, U. Gösele: Phys. Rev. B 63, R161101 (2001).

    Article  ADS  CAS  Google Scholar 

  50. N. Künzner, et al: Opt. Lett. 26, 1265 (2001).

    Article  PubMed  ADS  Google Scholar 

  51. L. Markham, et al: Appl. Phys. Lett. 86, 011912 (2005).

    Article  ADS  CAS  Google Scholar 

  52. C.J. Oton et al: Appl. Phys. Lett. 81, 4919 (2002).

    Article  ADS  CAS  Google Scholar 

  53. S.L. Diedenhofen, O.L Muskens, M.T. Borgström, E.P.A.M. Bakkers. J. Gómez Rivas: Unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rivas, J.G., Muskens, O.L., Borgström, M.T., Diedenhofen, S.L., Bakkers, E.P.A.M. (2008). Optical Anisotropy of Semiconductor Nanowires. In: Wang, Z.M. (eds) One-Dimensional Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74132-1_6

Download citation

Publish with us

Policies and ethics