Influence of Phenolics on Wine Organoleptic Properties



Condensed Tannin Grape Seed Salivary Protein Hydrolysable Tannin Port Wine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcalde-Eon, C., Escribano-Bailon, M.T., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2006). Changes in the detailed pigment composition of red wine during maturity and ageing – A comprehensive study. Anal. Chim. Acta, 563, 238–254.CrossRefGoogle Scholar
  2. Alcalde-Eon, C., Escribano-Bailón, M. T., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2007). Identification of dimeric anthocyanins and new oligomeric pigments in red wine by means of HPLC-DAD-ESI/MSn.J. Mass Spectr., 42, 735–748.CrossRefGoogle Scholar
  3. Amrani Joutei, K., Glories Y., & Mercier M. (1994). Localisation des tanins dans la pellicule de baie de raisin. Vitis, 33, 133–138.Google Scholar
  4. Artz, W. E., Bishop, P. D., Dunker, A. K., Schanus, E. G., & Swanson, B. G. (1987). Interaction of synthetic proanthocyanidin dimer and trimer with bovine serum-albumin and purified bean globulin fraction G-1. J. Agric. Food Chem., 35, 417–421.CrossRefGoogle Scholar
  5. Asen, S., Stewart, R. N., & Norris, K. H. (1972). Co-pigmentation of anthocyanins in plant tissues and its effects on color. Phytochemistry, 11, 1139–1144.CrossRefGoogle Scholar
  6. Asenstorfer, R. E., Markides, A. J., Iland, P. G., & Jones, G. P. (2003). Formation of vitisin A during red wine vinification and maturation. Aust. J. Grape Wine Res., 9, 40–46.CrossRefGoogle Scholar
  7. Bacon, J. R., & Rhodes, M. J. C. (1998). Development of a competition assay for the evaluation of the binding of human parotid salivary proteins to dietary complex phenols and tannins using a peroxidase-labeled tannin. J. Agric. Food Chem., 46, 5083–5088.CrossRefGoogle Scholar
  8. Bakker, J., & Timberlake, C. F. (1997). Isolation, identification and characterization of new color-stable anthocyanins occuring in some red wines. J. Agric. Food Chem., 46, 35–43.CrossRefGoogle Scholar
  9. Bakker, J., Bridle, P., Honda, T., Kuwano, H., Saito, N., Terahara, N., & Timberlake, C. F. (1997). Identification of an anthocyanin occuring in some red wines. Phytochemistry, 44, 1375–1382.CrossRefGoogle Scholar
  10. Baranac, J. M., Petranovic, N. A., & Dimitric-Markovic, J. M. (1996). Spectrophotometric study of anthocyan copigmentation reactions. J. Agric. Food Chem., 44, 1333–1336.CrossRefGoogle Scholar
  11. Baranac, J. M., Petranovic, N. A., & Dimitric-Markovic, J. M. (1997a). Spectrophotometric study of anthocyan copigmentation reactions.2. Malvin and the nonglycosidized flavone quercetin. J. Agric. Food Chem., 45, 1694–1697.CrossRefGoogle Scholar
  12. Baranac, J. M., Petranovic, N. A., & Dimitric-Markovic, J. M. (1997b). Spectrophotometric study of anthocyan copigmentation reactions.3. Malvin and the nonglycosidized flavone morin. J. Agric. Food Chem., 45, 1698–1700.CrossRefGoogle Scholar
  13. Bate-Smith, E. C., & Swain, T. (1962). Flavonoid Compounds. In H. S. Mason & A. M. Florkin (Ed.) Comparative Biochemistry (pp. 755–809). New York: Academic Press.Google Scholar
  14. Baxter, N. J., Lilley, T. H., Haslam, E., & Williamson, M. P. (1997). Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry, 36, 5566–5577.CrossRefGoogle Scholar
  15. Beart, J. E., Lilley, T. H., & Haslam, E. (1985). Plant Polyphenols - Secondary Metabolism and Chemical Defense – Some Observations. Phytochemistry, 24, 33–38.CrossRefGoogle Scholar
  16. Berke, B., & de Freitas, V. A. P. (2005). Influence of procyanidin structures on their ability to complex with oenin. Food Chem., 90, 453–460.CrossRefGoogle Scholar
  17. Berke, B., & de Freitas, V. A. P. (2007). A colorimetric study of oenin copigmented by procyanidins. J. Sci. Food Agric., 87, 260–265.CrossRefGoogle Scholar
  18. Bishop, P. D., & Nagel, C. W. (1984). Characterization of the condensation product of malvidin 3,5-diglucoside and catechin. J. Agric. Food Chem., 32, 1022–1026.CrossRefGoogle Scholar
  19. Bloomfield, D. G., Heatherbell, D. A., & Nikfardjam, M. S. P. (2003). Effect of p-coumaric acid on the color in red wine. Mitt. Klosterneuburg, 53, 195–198.Google Scholar
  20. Boido, E., Alcalde-Eon, C., Carrau, F., Dellacassa, E., & Rivas-Gonzalo, J. C. (2006). Aging effect on the pigment composition and color of Vitis vinifera L. cv Tannat wines. Contribution of the main pigment families to wine color. J. Agric. Food Chem., 54, 6692–6704.CrossRefGoogle Scholar
  21. Boulton, R. (1996). A method for the assessment of copigmentation in red wines. Presented at the Forty-seventh Annual Meeting of the American Society of Enology and Viticulture, Reno NV, June 1996.Google Scholar
  22. Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic., 52, 67–84.Google Scholar
  23. Bourzeix, M., Heredia, N., Estrella, M. I., Puech, J. L., & Fartsov, K. (1980). Estimation quantitative de la matière colorante rouge des moûts concentrés et des vins. Bull. Liaison-Groupe Polyphenols, 9, 131–142.Google Scholar
  24. Brouillard, R. (1982). Chemical structure of anthocyanins. In P. Markakis (Ed.), Anthocyanins as Food Colors (pp. 1–38). New York: Academic Press.Google Scholar
  25. Brouillard, R., & Dangles, O. (1993). Flavonoids and flower colour. In J. B. Harborne (Ed.) it The Flavonoids. Advances in research since 1986 (pp. 565–588). London: Chapman & Hall.Google Scholar
  26. Brouillard, R., & Dangles, O. (1994). Anthocyanin molecular-interactions - the first step in the formation of new pigments during wine aging. Food Chem., 51, 365–371.CrossRefGoogle Scholar
  27. Brouillard, R., Delaporte, B., & Dubois, J. E. (1977). Chemistry of anthocyanins pigments 2. Kinetic and thermodinamic study of proton transfer, hydration, and tautomeric reactions of malvidin-3-glucoside. J. Am. Chem. Soc., 99, 8461–8468.CrossRefGoogle Scholar
  28. Brouillard, R., Wigand, M. C., Dangles, O., & Cheminat, A. (1991). pH and solvent effects on the copigmentation reaction of malvin with polyphenols, purine and pyrimidine-derivatives. J. Chem. Soc. Perkin Trans., 2, 1235–1241.Google Scholar
  29. Brouillard, R., Chassaing, S., & Fougerousse, A. (2003). Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long? Phytochemistry, 64, 1179–1186.CrossRefGoogle Scholar
  30. Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol., 47, 311–340.CrossRefGoogle Scholar
  31. Calderon, P., Vanburen, J., & Robinson, W. B. (1968). Factors influencing formation of precipitates and hazes by gelatin and condensed and hydrolysable tannins. J. Agric. Food Chem., 16, 479–482.CrossRefGoogle Scholar
  32. Canals, R., Llaudy, M. C., Canals, J. M., & Zamora, F. (2008). Influence of the elimination and addition of seeds on the colour, phenolic composition and astringency of red wine. Eur. Food Res. Tech., 226, 1183–1190.CrossRefGoogle Scholar
  33. Carvalho, E., Povoas, M., Mateus, N., & de Freitas, V. A. P. (2006a). Application of flow nephelometry to the analysis of carbohydrate influence on protein-tannin interactions. J. Sci. Food Agric., 86, 891–896.CrossRefGoogle Scholar
  34. Carvalho, E., Mateus, N., Plet, B., Pianet, I., Dufourc, E., & dde Freitas, V. A. P. (2006b). Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. J. Agric. Food Chem., 54, 8936–8944CrossRefGoogle Scholar
  35. Chapon, L., (1993). Nephelometry as a Method for Studying the Relations between Polyphenols and Proteins. J. Inst. Brew., 99, 49–56.Google Scholar
  36. Charlton, A. J., Baxter, N. J., Lilley, T. H., Haslam, E., McDonald, C. J., & Williamson, M. P. (1996). Tannin interactions with a full-length human salivary proline-rich protein display a stronger affinity than with single proline-rich repeats. FEBS Letters, 382, 289–292.CrossRefGoogle Scholar
  37. Charlton, A. J., Haslam, E., & Williamson, M. P. (2002a). Multiple conformations of the proline-rich protein/epigallocatechin gallate complex determined by time-averaged nuclear Overhauser effects. J. Am. Chem. Soc., 124, 9899–9905.CrossRefGoogle Scholar
  38. Charlton, A. J., Baxter, N. J., Khan, M. L., Moir, A. J. G., Haslam, E., Davies, A. P., & Williamson, M. P. (2002b). Polyphenol/peptide binding and precipitation. J. Agric. Food Chem., 50, 1593–1601.CrossRefGoogle Scholar
  39. Cheynier, V., Moutounet, M., & Sarni-Manchado, P. (2003). Los compuestos fenólicos. In C. Flanzy (Ed.), Enologia: fundamentos cientificos y tecnologicos (pp. 114–136). Madrid: Ediciones Mundi-Prensa.Google Scholar
  40. Cheynier, V., Dueñas, M., Salas, E., Maury, C., Souquet, J. M., Sarni-Manchado, P., & Fulcrand, H. (2006). Structure and properties of wine pigments and tannins. Am. J. Enol. Vitic., 57, 298–305.Google Scholar
  41. Clifford, M. N. (1997). Astringrency. In F. A. Tomás-Barberán & R. J. Robins (Ed.), Phytochemistry of Fruits and Vegetables: proceedings of the phytochemical society of Europe (pp.87–107). Oxford: Clarendon Press.Google Scholar
  42. Clifford, M. N. (2000). Anthocyanins – nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 1063–1072.CrossRefGoogle Scholar
  43. Clifford, M. N., & Scalbert, A. (2000). Ellagitannins – nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 1118–1125.CrossRefGoogle Scholar
  44. Condelli, N., Dinnella, C., Cerone, A., Monteleone, E., & Bertuccioli, M. (2006). Prediction of perceived astringency induced by phenolic compounds II: criteria for panel selection and preliminary application on wine samples. Food Qual. Pref., 17, 96–107.CrossRefGoogle Scholar
  45. Czochanska, Z., Foo L. Y., & Porter L. J. (1979). Compositional changes in lower molecular weight flavans during grape maturation. Phytochemistry, 18, 1819–1822.CrossRefGoogle Scholar
  46. Dangles, O., & Brouillard, R. (1992). Polyphenol Interactions – the copigmentation case - thermodynamic data from temperature-variation and relaxation kinetics – medium effect. Can. J. Chem., 70, 2174–2189.CrossRefGoogle Scholar
  47. Dangles, O., Saito, N., & Brouillard, R. (1993). Kinetic and thermodynamic control of flavilium hydration in the pelargonidin–cinnamic acid complexation. Origin of the extraordinary flower colour diversity of Pharbitis nil. J. Am. Chem. Soc., 115, 3125–3132.Google Scholar
  48. Dangles, O., Elhabiri, M., & Brouillard, R. (1994). Kinetic and thermodynamic investigation of the aluminum anthocyanin complexation in aqueous-solution. J. Chem. Soc. Perkin Trans., 2, 2587–2596.Google Scholar
  49. Darias-Martín, J., Carrillo, M., Díaz, E., & Boulton R. B. (2001). Enhancement of red wine colour by pre-fermentation addition of copigments. Food Chem., 73, 217–220.CrossRefGoogle Scholar
  50. Darias-Martín, J., Martin-Luis, B., Carrillo-Lopez, M., Lamuela-Raventos, R., Díaz-Romero, C., & Boulton R. B. (2002). Effect of caffeic acid on the color of red wine. J. Agric. Food Chem., 50, 2062–2067.CrossRefGoogle Scholar
  51. Darias-Martin, J., Carrillo-Lopez, M., Echavarri, J. F., & Diaz-Romero, C. (2007). The magnitude of copigmentation in the colour of aged red wines made in the Canary Islands. Eur. Food Res. Tech., 224, 643–648.CrossRefGoogle Scholar
  52. Davies, A. J., & Mazza, G. (1993). Copigmentation of simple and acylated anthocyanins with colorless phenolic-compounds. J. Agric. Food Chem., 41, 716–720.CrossRefGoogle Scholar
  53. de Freitas, V. A. P., & Mateus, N. (2001). Structural features of procyanidin interactions with salivary proteins. J. Agric. Food Chem., 49, 940–945.CrossRefGoogle Scholar
  54. de Freitas, V. A. P., & Mateus, N. (2002). Nephelometric study of salivary protein-tannin aggregates. J. Sci. Food Agric., 82, 113–119.CrossRefGoogle Scholar
  55. de Freitas, V. A. P., Glories, Y., Bourgeois, G., & Vitry, C. (1998). Characterisation of oligomeric and polymeric procyanidins from grape seeds by liquid secondary ion mass spectrometry. Phytochemistry, 49, 1435–1441.CrossRefGoogle Scholar
  56. de Freitas, V. A. P., Glories Y., & Augustin, M. (2001). Developmental changes of procyanidins in grapes of red Vitis vinifera varieties and their composition in respective wines. Am. J. Enol. Vitic., 51, 397–403.Google Scholar
  57. de Freitas, V. A. P., Carvalho, E., & Mateus, N. (2003). Study of the Influence of carbohydrates on the Protein-Tannin aggregation by nephelometry. Food Chem., 81, 503–509.CrossRefGoogle Scholar
  58. de Freitas, V., Sousa, C., Silva, A., Santos-Buelga, C., & Mateus, N. (2004). Synthesis of a new catechin-pyrylium derived pigment. Tetrahedron Lett., 45, 9349–9352.CrossRefGoogle Scholar
  59. de Wijk, R. A., & Prinz, J. F. (2005). The role of friction in perceived oral texture. Food Qual. Pref., 16, 121–129.CrossRefGoogle Scholar
  60. di Stefano, R., Gentilini, N., & Panero, L. (2005). Experimental observations about copigmentation phenomenon. Riv. Vit. Enol., 58, 35–50.Google Scholar
  61. Doco, T., Williams, P., Moutounet, M., & Pellerin, P. (2000). Les polysaccharides du vin. Bull. O.I.V., 73, 785–792.Google Scholar
  62. Dodds, M. W. J., Johnson, D. A., & Yeh, C. K. (2005). Health benefits of saliva: a review. J. Den., 33, 223–233.Google Scholar
  63. Dueñas, M., Fulcrand, H., & Cheynier, V. (2006). Formation of anthocyanin-flavanol adducts in model solutions. Anal. Chim. Acta, 563, 15–25.CrossRefGoogle Scholar
  64. Edelmann, A., & Lendl, B. (2002). Toward the optical tongue: Flow-through sensing of tannin- protein interactions based on FTIR spectroscopy. J. Am. Chem. Soc., 124, 14741–14747.CrossRefGoogle Scholar
  65. Eiro, M. J., & Heinonen, M. (2002). Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation. J. Agric. Food Chem., 50, 7461–7466.CrossRefGoogle Scholar
  66. Escalona, H., Birkmyre, L., Piggott, J. R., & Paterson, A. (2002). Effect of maturation in small oak casks on the volatility of red wine aroma compounds. Anal. Chim. Acta, 458, 45–54.CrossRefGoogle Scholar
  67. Escot, S., Feuillat, M., Dulau, L., & Charpentier, C. (2001). Release of polysaccharides by yeasts and the influence of released polysaccharides on colour stability and wine astringency. Aust. J. Grape Wine Res., 7, 153–159.CrossRefGoogle Scholar
  68. Escribano-Bailon, T., Dangles, O., & Brouillard, R. (1996). Coupling reactions between flavylium ions and catechin. Phytochemistry, 41, 1583–1592.CrossRefGoogle Scholar
  69. Escribano-Bailon, M. T., Santos-Buelga, C., Francia-Aricha, E. M., Rivas-Gonzalo, J. C., & Heredia, F. J. (1999). Flavanol-anthocyanin and colour quality. In Proceedings of 1st International Congress Pigment in Food Technology (pp. 363–367). Sevilla, Spain.Google Scholar
  70. Escribano-Bailon, T., Alvarez-Garcia, M., Rivas-Gonzalo, J. C., Heredia, F. J., & Santos-Buelga, C. (2001). Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin 3-O-glucoside and (+)-catechin. J. Agric. Food Chem., 49, 1213–1217.CrossRefGoogle Scholar
  71. Es-Safi, N., Fulcrand, H., Cheynier, V., & Moutounet, M. (1999). Studies on the acetaldehyde-induced condensation of (-)-epicatechin and malvidin 3-O-glucoside in a model solution system.J. Agric. Food Chem., 47, 2096–2102.CrossRefGoogle Scholar
  72. Es-Safi, N.-E., Cheynier, V., & Moutounet, M. (2002). Interactions between cyanidin 3-O-glucoside and furfural derivatives and their impact on food color changes. J. Agric. Food Chem., 50, 5586–5595.CrossRefGoogle Scholar
  73. Fernandez de Simon, B., Hernandez, T., Cadahia, E., Dueñas, M., & Estrella, I. (2003). Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. Eur. Food Res. Tech., 216, 150–156.Google Scholar
  74. Fischer, U., & Noble A. C. (1994). The effect of ethanol, catechin concentration, and pH on sournss and bittherness of wine. Am. J. Enol. Vitic., 45, 6–10.Google Scholar
  75. Francia-Aricha, E. M., Guerra, M. T., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (1997). New anthocyanin pigments formed after condensation with flavanols . J. Agric. Food Chem., 45, 2262–2266.CrossRefGoogle Scholar
  76. Frazier, R. A., Papadopoulou, A., Mueller-Harvey, I., Kissoon, D., & Green, R. J. (2003). Probing protein-tannin interactions by isothermal titration microcalorimetry. J. Agric. Food Chem., 51, 5189–5195.CrossRefGoogle Scholar
  77. Frazier, R. A., Papadopoulou, A., & Green, R. J. (2006). Isothermal titration calorimetry study of epicatechin binding to serum albumin. J. Pharm. Biomed. Anal., 41, 1602–1605.CrossRefGoogle Scholar
  78. Fry, S. C. (1995). Polysaccharide-modifying enzymes in the plant-cell wall. Ann. Rev. Plant Physiol. Plant Mol. Biol., 46, 497–520.CrossRefGoogle Scholar
  79. Fulcrand, H., Cameira Dos Santos, P. J., Sarni-Manchado, P., Cheynier, V., & FabreBonvin, J. (1996). Structure of new anthocyanin-derived wine pigments. J. Chem. Soc. Perkin Trans., 1, 735–739.CrossRefGoogle Scholar
  80. Gawel, R. (1998). Red wine astringency: a review. Aust. J. Grape Wine Res., 4, 74–95.CrossRefGoogle Scholar
  81. Gawel, R., Oberholster A., & Francis, I. L. (2000). A “Mouth-feel Wheel”: terminology for communicating the mouth-feel characteristics of red wine. Aust. J. Grape Wine Res., 6, 203–207.CrossRefGoogle Scholar
  82. Gawel, R., Iland, P. G., & Francis, I. L. (2001). Characterizing the astringency of red wine: a case study. Food Qual. Pref., 12, 83–94.CrossRefGoogle Scholar
  83. Goldstein, J. L., & Swain, T. (1963). Changes in tannins in ripening fruits. Phytochemistr , 2, 371–383.CrossRefGoogle Scholar
  84. Gomez-Miguez, M., Gonzalez-Manzano, S., Escribano-Bailon, M. T., Heredia, F. J., & Santos-Buelga, C. (2006). Influence of different phenolic copigments on the color of malvidin 3-glucoside. J. Agric. Food Chem., 54, 5422–5429.CrossRefGoogle Scholar
  85. Gonnet, J. F. (1998). Colour effects of co-pigmentation of anthocyanins revisited – 1. A colorimetric definition using the CIELAB scale. Food Chem., 63, 409–415.CrossRefGoogle Scholar
  86. Gonzalez-Manzano, S. (2007). Anthocyanins and flavanols in grape and wine. Influence of the composition in the processes of copigmentation and colour stability. Ph.D. dissertation, University of Salamanca (Spain).Google Scholar
  87. Gonzalez-Manzano, S., Mateus, N., de Freitas, V. A. P., & Santos-Buelga, C. (2008a). Influence of the degree of polymerisation in the ability of catechins to act as anthocyanin copigments 228, 83–92.Google Scholar
  88. González-Manzano, S., Santos-Buelga, C., Dueñas, M., Rivas-Gonzalo, J. C., & Escribano-Bailón, M. T. (2007b). Colour implications of self-association processes of wine anthocyanins.Eur. Food Res. Tech. (in press). DOI 10.1007/s00217-007-0560-9.Google Scholar
  89. Goto, T., & Kondo, T. (1991). Structure and molecular stacking of anthocyanins – flower color variation. Angewadte Cemie International English Edition, 30, 17–33.Google Scholar
  90. Green, B. G. (1993). Oral Astringency – A tactile component of flavor. Acta Psych., 84, 119–125.CrossRefGoogle Scholar
  91. Guadalupe, Z., Palacios, A., & Ayestaran, B. (2007). Maceration enzymes and mannoproteins: a possible strategy to increase colloidal stability and color extraction in red wines.J. Agric. Food Chem., 55,4854–4862.CrossRefGoogle Scholar
  92. Hagerman, A. E., & Butler, L. G. (1980). Determination of protein in tannin-protein Precipitates. J. Agric. Food Chem., 28, 944–947.CrossRefGoogle Scholar
  93. Hagerman, A. E., & Butler, L. G. (1981). The specificity of proanthocyanidin-protein interactions. J. Biol. Chem., 256, 4494–4497.Google Scholar
  94. Hagerman, A. E., Rice, M. E., & Ritchard, N. T. (1998). Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin(16) (4 -> 8) catechin (procyanidin). J. Agric. Food Chem., 46, 2590–2595.CrossRefGoogle Scholar
  95. Hakansson, E., Pardon, K., Hayasaka, Y., de Sa, M., & Herderich, M. (2003). Structures and colour properties of new red wine pigments. Tetrahedron Lett., 44, 4887–4891.CrossRefGoogle Scholar
  96. Haslam, E. (1980). In vino veritas: oligomeric procyanidins and the ageing of red wines. Phytochemistry, 16, 1625–1670.CrossRefGoogle Scholar
  97. Haslam, E. (1998a). Taste, bitterness and astringency. In E. Haslam (Ed.), Pratical polyphenolics: from structure to molecular recognition and physiological action (pp. 178–225). Cambridge: University Press.Google Scholar
  98. Haslam, E. (1998b). Maturation – Changes in astringency. In E. Haslam (Ed.), Pratical polyphenolics: from structure to molecular recognition and physiological action (pp. 226–261). Cambridge: University Press.Google Scholar
  99. Hatano, T., & Hemingway, R. W. (1996). Association of (+)-catechin and catechin-(4 alpha->8)-catechin with oligopeptides. Chem. Comm., 22, 2537–2538.Google Scholar
  100. Hermosin, I. (2003). Influence of ethanol content on the extent of copigmentation in a Cencibel Young Red Wine.J. Agric. Food Chem., 51, 4079–4083.CrossRefGoogle Scholar
  101. Hermosin, I., Sanchez-Palomo, E., & Vicario-Espinosa, A. (2005). Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chem., 92, 269–283.CrossRefGoogle Scholar
  102. Hollman, P. C. H., & Arst, I. C. W. (2000). Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 1081–1092.CrossRefGoogle Scholar
  103. Horne, J., Hayes, J., & Lawless, H. T. (2002). Turbidity as a measure of salivary protein reactions with astringent substances. Chem. Sens., 27, 653–659.CrossRefGoogle Scholar
  104. Hoshino, T. (1991). An approximate estimate of self-association constants the self-stacking conformation of malvin quinoidal bases studied by 1H NMR. Phytochemistry, 30, 2049–2055.CrossRefGoogle Scholar
  105. Hoshino, T., Matsumoto, U., Harada, N., & Goto, T. (1981). Chiral excitation coupled stacking of anthocyanins: Interpretation of the origin of anomalous CD induced by anthocyanin association. Tetrahedron Lett., 22, 3621–3624.CrossRefGoogle Scholar
  106. Houbiers, C., Lima, J. C., Maçanita, A. L., & Santos, H. (1998). Color stabilization of malvidin 3-glucoside: Self-aggregation of the flavylium cation and copigmentation with the Z-chalcone form. J. Phy. Chem. B, 102, 3578–3585.CrossRefGoogle Scholar
  107. Huber, D. J. (1983). Polyuronide Degradation and Hemicellulose Modifications in Ripening Tomato Fruit. J. Am. Soc. Hort. Sci., 108, 405–409.Google Scholar
  108. Jobstl, E., O’Connell, J., Fairclough, J. P. A., & Williamson, M. P. (2004). Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules, 5, 942–949.CrossRefGoogle Scholar
  109. Jobstl, E., Howse, J. R., Fairclough, J. P. A., & Williamson, M. P. (2006). Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J. Agric. Food Chem., 54, 4077–4081.CrossRefGoogle Scholar
  110. Jurd, L. (1967). Catechin-flavylium salt condesation reactions. Tetrahedron, 23, 1057–1064.CrossRefGoogle Scholar
  111. Jurd, L. (1969). Review of polyphenol condensation reactions and their possible occurrence in the aging of wines. Am. J. Enol. Vitic., 20, 191–195.Google Scholar
  112. Jurd, L., & Somers, T. C. (1970). The formation of xanthylium salts from proanthocyanidins. Phytochemistry, 9, 419–427.CrossRefGoogle Scholar
  113. Kallithraka, S., Bakker, J., & Clifford, M. N. (1998). Evidence that salivary proteins are involved in astringency. J. Sens. Stud., 13, 29–43.CrossRefGoogle Scholar
  114. Kandra, L., Gyemant, G., Zajacz, A., & Batta, G. (2004). Inhibitory effects of tannin on human salivary alpha-amylase. Biochem. Bioph. Res. Comm., 319, 1265–1271.CrossRefGoogle Scholar
  115. Kauffman, D. L, & Keller, P. J. (1979). Basic proline-rich proteins in human-parotid saliva from a single subject. Arch. Oral Biol., 24, 249–256.CrossRefGoogle Scholar
  116. Kauffman, D. L., Bennick, A., Blum, M., & Keller, P. J. (1991). Basic proline-rich proteins from human parotid-saliva – Relationships of the covalent structures of 10 proteins from a single individual. Biochemistry, 30, 3351–3356.CrossRefGoogle Scholar
  117. Kennedy, J. A., Matthews M. A., & Waterhouse A. L. (2000). Changes in grape seed polyphenols during fruit ripening. Phytochemistry, 55, 77–85,CrossRefGoogle Scholar
  118. Kovac, V., Alonso, E., Bourzeix, M., & Revilla, E. (1992). Effect of several enological practices on the content of catechins and proanthocyanidins of red wines. J. Agric. Food Chem., 40, 1953–1957.CrossRefGoogle Scholar
  119. Kovac, V., Alonso, E., & Revilla, E. (1995). The effect of adding supplementary quantities of seeds during fermentation on the phenolic composition of wines. Am. J. Enol. Vitic., 46, 363–367.Google Scholar
  120. Krueger, C. G., Dopke, N. C., Treichel, P. M., Folts, J., & Reed, J. D. (2000). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polygalloyl polyflavan-3-ols in grape seed extract. J. Agric. Food Chem., 48, 1663–1667.CrossRefGoogle Scholar
  121. Laborde, B., Moine-Ledoux, V., Richard, T., Saucier, C., Dubourdieu, D., & Monti, J.-P. (2006). PVPP-polyphenol complexes: A molecular approach. J. Agric. Food Chem., 54, 4383–4389.Google Scholar
  122. Lea, A. G. H. (1990). Bitterness and astringency: the procyanidines of fermented apple ciders. In R. L. Rouseff (Ed.), Bitterness in Foods and Beverages. Developments in Food Science 25 (pp. 123–143). Amsterdam: Elsevier.Google Scholar
  123. Lea, A. G. H. (1992). Flavor, color, and stability in fruit products: The effect of polyphenols. In R. W. Hemingway & P. E. Laks (Ed.), Plant Polyphenols (pp. 827–837). New York: Plenum Press.Google Scholar
  124. Lee, C. B., & Lawless, H. T. (1991). Time-course of astringent sensations. Chem. Senses, 16, 225–238.CrossRefGoogle Scholar
  125. Lesschaeve, I., & Noble, A. C. (2005). l Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nut., 81, 330S–335S.Google Scholar
  126. Levengood, J., & Boulton, R. (2004). The variation in the color due to copigmentation in young Cabernet Sauvignon wines. In A. L. Waterhouse & J. A. Kennedy (Eds.), Red wine color: revealing the mysteries (pp. 35–52). Washington DC: American Chemical Society.Google Scholar
  127. Lewis, C. E., Walker, J. R. L., & Lancaster, J. E. (1995). Effect of polysaccharides on the color of anthocyanins. Food Chem., 54, 315–319.CrossRefGoogle Scholar
  128. Liao, H., Cai, Y., & Haslam, E. (1992). Polyphenols interactions. Anthocyanins: copigmentation and colour changes in young red wines. J. Sci. Food Agric., 59, 299–305.CrossRefGoogle Scholar
  129. Llaudy, M. C., Canals, R., Canals, J. M., Rozes, N., Arola, L., & Zamora, F. (2004). New method for evaluating astringency in red wine. J. Agric. Food Chem., 52, 742–746.CrossRefGoogle Scholar
  130. Lorenzo, C., Pardo, F., Zalacain, A., Alonso, G. L., & Salinas M. R. (2005). Effect of Red Grapes Co-winemaking in Polyphenols and Color of Wines. J. Agric. Food Chem., 53, 7609–7616.CrossRefGoogle Scholar
  131. Lu, Y., & Bennick, A. (1998). Interaction of tannin with human salivary proline-rich proteins. Arch. Oral Biol., 43, 717–728.CrossRefGoogle Scholar
  132. Luck, G., Liao, H., Murray, N. J., Grimmer, H. R., Warminski, E. E., Williamson, M. P., Lilley, T. H., & Haslam, E. (1994). Polyphenols, astringency and proline-rich proteins. Phytochemistry, 37, 357–371.CrossRefGoogle Scholar
  133. Malien-Aubert, C., Dangles, O., & Amiot, M. J. (2002). Influence of procyanidins on the color stability of eonin solutions. J. Agric. Food Chem., 50, 3299–3305.CrossRefGoogle Scholar
  134. Mateus, N., & de Freitas, V. A. P. (2001). Evolution and stability of anthocyanin-derived pigments during port wine aging. J. Agric. Food Chem., 49, 5217–5222.CrossRefGoogle Scholar
  135. Mateus, N., de Pascual-Teresa, S., Rivas-Gonzalo, J. C., Santos-Buelga, C., & de Freitas, V. A. P. (2002a). Structural diversity of anthocyanin-derived pigments in port wines. Food Chem., 76, 335–342.Google Scholar
  136. Mateus, N., Silva, A. M. S., Santos-Buelga, C., Rivas-Gonzalo, J. C., & de Freitas, V. A. P. (2002b). Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J. Agric. Food Chem., 50, 2110–2116.Google Scholar
  137. Mateus, N., Silva, A. M. S., Rivas-Gonzalo, J. C., Santos-Buelga, C., & de Freitas, V. A. P. (2003). A new class of blue anthocyanin-derived pigments isolated from red wines. J. Agric. Food Chem., 51, 1919–1923.CrossRefGoogle Scholar
  138. Mateus, N., Carvalho, E., Luis, C., & de Freitas, V. A. P. (2004a). Influence of the tannin structure towards the disruption effect of carbohydrates on protein-tannin aggregates. Anal. Chim. Acta, 513, 135–140.CrossRefGoogle Scholar
  139. Mateus, N., Oliveira, J., Santos-Buelga, C., Silva, A. M. S., & de Freitas, V. A. P. (2004b). NMR structural characterization of a new vinylpyranoanthocyanin-catechin pigment (a portisin). Tetrahedron Lett., 45, 3455–3457.Google Scholar
  140. Mateus, N., Pinto, R., Ruão, P., & de Freitas, V. A. P. (2004c). Influence of the addition of grape seed procyanidins to Port wines in the resulting reactivity with human salivary proteins. Food Chem., 84, 195–200.CrossRefGoogle Scholar
  141. Maury, C., Sarni-Manchado, P., Lefebvre, S., Cheynier, V., & Moutounet, M. (2003). Influence of fining with plant proteins on proanthocyanidin composition of red wines. Am. J. Enol. Vitic., 54, 105–111.Google Scholar
  142. McDonald, M. S., Hughes, M., Burns, J., Lean, M. E. J., Matthews, D., & Crozier, A. (1998). Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. J. Agric. Food Chem., 46, 368–375.CrossRefGoogle Scholar
  143. Messana, I., Cabras, T., Inzitari, R., Lupi, A., Zuppi, C., Olmi, C., Fadda, M. B., Cordaro, M., Giardina, B., & Castagnola, M. (2004). Characterization of the human salivary basic proline-rich protein complex by a proteomic approach. J. Proteome Res., 3, 792–800.CrossRefGoogle Scholar
  144. Mirabel, M., Saucier, C., Guerra, C., & Glories, Y. (1999). Copigmentation in model wine solutions: Ocurrence and relation to wine ageing. Am. J. Enol. Vitic., 50, 211–218.Google Scholar
  145. Mirabel, E. (1991). Polyphenol Interactions.5. Anthocyanin Copigmentation. J. Chem. Soc. Perkin Trans., 2, 1287–1296.Google Scholar
  146. Monagas, M., Martin-Alvarez, P. J., Bartolome, B., & Gomez-Cordoves, C. (2006). Statistical interpretation of the color parameters of red wines in function of their phenolic composition during aging in bottle. Eur. Food Res. Tech., 222, 702–709.CrossRefGoogle Scholar
  147. Monteleone, E., Condelli, N., Dinnella, C., & Bertuccioli, M. (2004). Prediction of perceived astringency induced by phenolic compounds. Food Qual. Pref., 15, 761–769.CrossRefGoogle Scholar
  148. Murray, N. J., Williamson, M. P., Lilley, T. H., & Haslam, E. (1994). Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR Spectroscopy. Eur. J. Biochem., 219, 923–935.CrossRefGoogle Scholar
  149. Naczk, M., Oickle, D., Pink, D., & Shahidi, F. (1996). Protein precipitating capacity of crude canola tannins: Effect of pH, tannin, and protein concentrations. J. Agric. Food Chem., 44, 2144–2148.CrossRefGoogle Scholar
  150. Noble, A. (1990). Bitterness and astringency in wine. In R. Rousseff (Ed.), Bitterness in Foods and Beverages (pp. 145–158). Amsterdam: Elsevier.Google Scholar
  151. Nonier, M. F., Pianet, I., Laguerre, M., Vivas, N., & Vivas de Gaulejac, N. (2006). Condensation products derived from flavan-3-ol oak wood aldehydes reaction. 1. Structural investigation. Anal. Chim. Acta, 563, 76–83.CrossRefGoogle Scholar
  152. Oh, H. I., Hoff, J. E., Armstrong, G. S., & Haff, L. A. (1980). Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem., 28, 394–398.CrossRefGoogle Scholar
  153. Okuda, T., Mori K., & Hatano T. (1985). Relationship of the structure of tannins to the binding activities with hemoglobin and methylene blue.Chem. Pharm. Bull., 33, 1424–1433.Google Scholar
  154. Oliveira, J., Fernandes, V., Miranda, C., Santos-Buelga, C., Silva, A. M. S., de Freitas, V. A. P., & Mateus, N. (2006a). Color properties of four cyanidin-pyruvic acid adducts. J. Agric. Food Chem., 54, 6894–6903.CrossRefGoogle Scholar
  155. Oliveira, J., Santos-Buelga, C., Silva, A. M. S., de Freitas, V. A. P., & Mateus, N. (2006b). Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine. Anal. Chim. Acta, 563, 2–9.CrossRefGoogle Scholar
  156. Ozawa, T., Lilley, T. H., & Haslam, E. (1987). Polyphenol interactions - astringency and the loss of astringency in ripening fruit. Phytochemistry, 26, 2937–2942.CrossRefGoogle Scholar
  157. Papadopoulou, A., Green, R. J., & Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. J. Agric. Food Chem., 53, 158–163.CrossRefGoogle Scholar
  158. Peleg, H., Karine Gacon, K., Schlich, P., & Noble, A. C. (1999). Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric., 79, 1123–1128.CrossRefGoogle Scholar
  159. Perez-Prieto, L. J., de la Hera-Orts, M. L., Lopez-Roca, J. M., Fernandez-Fernandez, J. I., & Gomez-Plaza, E. (2003). Oak-matured wines: influence of the characteristics of the barrel on wine colour and sensory characteristics. J. Sci. Food Agric., 83, 1445–1450.CrossRefGoogle Scholar
  160. Pissarra, J., Mateus, N., Rivas-Gonzalo, J., Santos-Buelga, C., & de Freitas, V. A. P. (2003). Reaction between malvidin-3-glucoside and (+)-catechin in model solutions containing different aldehydes. J. Food Sci., 68, 476–481.CrossRefGoogle Scholar
  161. Pissarra, J., Lourenço, S., González-Paramás, A. M., Mateus, N., Santos-Buelga, C., Silva, A. M. S., & de Freitas, V. A. P. (2004). Structural characterization of new malvidin-3-glucoside-catechin aryl/alkyl pigments. J. Agric. Food Chem., 52, 5519–5526.CrossRefGoogle Scholar
  162. Pissarra, J., Lourenςo, S., González-Paramás, A. M., Mateus, N., Santos-Buelga, C., Silva, A. M. S., & de Freitas, V. A. P. (2005). Isolation and structural characterization of new anthocyanin-alkyl-catechin pigments. Food Chem., 90, 81–87.CrossRefGoogle Scholar
  163. Poncet-Legrand, C., Edelmann, A., Putaux, J. L., Cartalade, D., Sarni-Manchado, P., & Vernhet, A. (2006). Poly(L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocoll., 20, 687–697.CrossRefGoogle Scholar
  164. Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena – An overview. Crit. Rev. Food Sci. Nut., 47, 1–19.CrossRefGoogle Scholar
  165. Preys, S., Mazerolles, G., Courcoux, P., Samson, A., Fischer, U., Hanafi, M., Bertrand, D., & Cheynier, V. (2006). Relationship between polyphenolic compostion and some sensory properties in red wines using multiway analyses. Anal. Chim. Acta, 563, 126–136.CrossRefGoogle Scholar
  166. Remy, S., Fulcrand, H., Labarbe, B., Cheynier, V., & Moutounet, M. (2000). First confirmation in red wine of products resulting from direct anthocyanin-tannin reactions. J. Sci. Food Agric., 80, 745–751.CrossRefGoogle Scholar
  167. Remy-Tanneau, S., Le Guernevé, C., Meudec, E., & Cheynier, V. (2003). Characterization of a colorless anthocyanin-flavan-3-ol dimer containing both carbon-carbon and ether interflavanoid linkages by NMR and mass spectrometry. J. Agric. Food Chem., 51, 3592–3597.CrossRefGoogle Scholar
  168. Rentzsch. M., Schwarz, M., Winterhalter, P., & Hermosin, I., (2007). Formation of hydroxyphenyk-pyranoanthocyanins in Grenache wines: precursor levels and evolution during aging. J. Agric. Food Chem., 55, 4883–4888.CrossRefGoogle Scholar
  169. Ribéreau-Gayón, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000). Handbook of Enology. Vol. 2. The chemistry of wine stabilization and treatments. London: John Wiley and Sons, Inc.Google Scholar
  170. Riou, V., Vernhet, A., Doco, T., &Moutounet, M. (2002). Aggregation of grape seed tannins in model wine – effect of wine polysaccharides. Food Hydrocol., 16, 17–23.CrossRefGoogle Scholar
  171. Rivas-Gonzalo, J. C., Bravo-Haro, S., &Santos-Buelga, C. (1995). Detection of compounds formed through the reaction of malvidin 3-monoglucoside and catechin in the presence of acetaldehyde. J. Agric. Food Chem., 43, 1444–1449.CrossRefGoogle Scholar
  172. Salas, E., Atanasova, V., Poncet-Legrand, C., Meudec, E., Mazauric, J. P., & Cheynier, V. (2004a). Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Anal. Chim. Acta, 513, 325–332.CrossRefGoogle Scholar
  173. Salas, E., Le Guerneve, C., Fulcrand, H., Poncet-Legrand, C., & Cheynier, V. (2004b). Structure determination and colour properties of a new directly linked flavanol-anthocyanin dimer. Tetrahedron Lett., 45, 8725–8729.CrossRefGoogle Scholar
  174. Salas, E., Dueñas, M., Schwarz, M., Winterhalter, P., Cheynier, V., & Fulcrand, H. (2005). Characterization of pigments from different high speed countercurrent chromatography wine fractions. J. Agric. Food Chem., 53, 4536–4546.CrossRefGoogle Scholar
  175. Santos-Buelga, C., & Scalbert, A. (2000). Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric., 80, 1094–1117.CrossRefGoogle Scholar
  176. Sarni-Manchado, P., & Cheynier, V. (2002). Study of non-covalent complexation between catechin derivatives and peptides by electrospray ionization mass spectrometry. J. Mass Spectr., 37, 609–616.CrossRefGoogle Scholar
  177. Sarni-Manchado, P., Cheynier, V., & Moutounet, M. (1997). Reaction of enzimatically generated quinones with malvidin-3-glucoside. Phytochemistry, 45, 1365.CrossRefGoogle Scholar
  178. Schwarz, M., Jerz, G., & Winterhalter, P. (2003). Isolation and structure of Pinotin A, a new anthocyanin derivative from Pinotage wine. Vitis 42, 105–106.Google Scholar
  179. Schwarz, M., & Winterhalter, P. (2004). Novel aged anthocyanins from Pinotage wines: isolation, characterization, and pathway of formation. In A. L. Waterhouse & J. A. Kennedy (Eds.), Red wine color: revealing the mysteries (pp. 179–197). Washington DC.Google Scholar
  180. Siebert, K. J., Troukhanova, N. V., &Lynn, P. Y. (1996). Nature of polyphenol-protein interactions. J. Agric. Food Chem., 44, 80–85.CrossRefGoogle Scholar
  181. Simon, C., Barathieu, K., Laguerre, M., Schmitter, J. M., Fouquet, E., Pianet, I., &Dufourc, E. J. (2003). Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach. Biochemistry, 42, 10385–10395.CrossRefGoogle Scholar
  182. Singleton, V. L., & Noble A. C. (1976).Wine flavor and phenolic substances. In C. O. Chichester (Ed.), Advance in Food Research, Suppl. 3 (pp. 47–70). Washington: American Chemical Society.Google Scholar
  183. Soares, S., Mateus, N., & de Freitas, V. A. P. (2007). Interaction of different polyphenols with bovine serum albumin (BSA) and human α-amylase (HSA) by quenching fluorescence. J. Agric. Food Chem., 55, 6726–6735.CrossRefGoogle Scholar
  184. Somers, T. C. (1966). Wine tannins – isolation of condensed flavonoid pigments by gel-filtration. Nature, 209, 368–370.CrossRefGoogle Scholar
  185. Somers, T. C. (1971). The phenolic nature of wine pigments. Phytochemistry, 10, 2175–2186.CrossRefGoogle Scholar
  186. Somers, T. C., & Evans, M. E. (1979). Grape pigment phenomena - interpretation of major color losses during vinification. J. Sci. Food Agric., 30, 623–633.CrossRefGoogle Scholar
  187. Souquet, J. M., Cheynier, V., Brossaud, F., & Moutounet, M. (1996). Polymeric proanthocyanidins from grape skins. Phytochemistry, 43, 509–512.CrossRefGoogle Scholar
  188. Sousa, C., Mateus, N., Perez-Alonso, J., Santos-Buelga, C., & de Freitas, V. A P. (2005). Preliminary study of oaklins, a new class of brick-red catechin-pyrylium pigments resulting from the reaction between catechin and wood aldehydes. J. Agric. Food Chem., 53, 9249–9256.CrossRefGoogle Scholar
  189. Sousa, C., Mateus, N., Silva, A. M. S., González-Paramás, A.,M., Santos-Buelga, C., & de Freitas, V. (2007). Structural and chromatic characterization of a new malvidin-3-glucoside-vanillyl-catechin pigment. Food Chem., 102, 1344–1351.CrossRefGoogle Scholar
  190. Taira, S., Ono, M., & Matsumoto, N. (1997). Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biol. Technol., 12, 265–271.CrossRefGoogle Scholar
  191. Tanaka, T., Takahashi, R., Houno, I., & Nonaka G.-I. (1994). Chemical evidence for the de-aastringency (insolubilization of tannins) of persimmon fruit. J. Chem. Soc. Perkin Trans., 1, 3013–3022.CrossRefGoogle Scholar
  192. Timberlake, C. F., & Bridle, P. (1976). Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic., 27, 97–105.Google Scholar
  193. Troszynska, A., Amarowicz, R., Lamparski, G., Wolejszo, A., & Barylko-Pikielna, N. (2006). Investigation of astringency of extracts obtained from selected tannins-rich legume seeds. Food Qual. Pref., 17, 31–35.CrossRefGoogle Scholar
  194. Vernhet, A., Pellerin, P., Prieur, C., Osmianski, J., & Moutounet, M. (1996). Charge properties of some grape and wine polysaccharide and polyphenolic fractions. Am. J. Enol. Vitic., 47, 25–30.Google Scholar
  195. Vidal, S., Francis, L., Guyot, S., Marnet, N., Kwiatkowski, M., Gawel, R., Cheynier, V., & Waters E. (2003a). The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric., 83, 564–573.CrossRefGoogle Scholar
  196. Vidal, S., Cheynier, V, Waters E, & Noble A. C. (2003b). Effect of tannin composition and wine carbohydrates on astringency and bitterness. In H. Meiselman (Ed.), 5th Pangborn Sensory Science Symposium. Boston: Elsevier.Google Scholar
  197. Vidal, S., Francis, L., Noble, A., Kwiatkowski, M., Cheynier, V., & Waters, E. (2004a). Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta, 513, 57–65.CrossRefGoogle Scholar
  198. Vidal, S., Meudec, E., Cheynier, V., Skouroumounis, G., & Hayasaka, Y. (2004b). Mass spectrometric evidence for the existence of oligomeric anthocyanins in grape skins. J. Agric. Food Chem., 52, 7144–7151.CrossRefGoogle Scholar
  199. Vidal, S., Courcoux, P., Francis, L., Kwiatkowski, M., Gawel, R., Williams, P., Waters, E., & Cheynier, V. (2004c). Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual. Pref., 15, 209–217.CrossRefGoogle Scholar
  200. Vivar-Quintana, A. M., Santos-Buelga, C., Francia-Aricha, E., & Rivas-Gonzalo, J. C. (1999). Formation of anthocyanin-derived pigments in experimental red wines. Food Sci. Technol. Inter., 5, 347–352.CrossRefGoogle Scholar
  201. Vivar-Quintana, A. M., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2002). Anthocyanin-derived pigments and colour of red wines. Anal. Chim. Acta, 458, 147–155.CrossRefGoogle Scholar
  202. Vivas de Gaulejac, N., Vivas, N., Absalon, C., & Nonier, M. F. (2001). Identification of procyanidin A2 in grape and wine of Vitis vinifera L. cv Merlot Noir and Carbernet-Sauvignon. J. Int. Sci. Vigne Vin, 35, 51–56.Google Scholar
  203. Wildenradt, H. L., & Singleton V. L. (1974). Production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. J. Agric. Food Chem., 25, 119–126.Google Scholar
  204. Wroblewski, K., Muhandiram, R., Chakrabartty, A., & Bennick, A. (2001). The molecular interaction of human salivary histatins with polyphenolic compounds. Eur. J. Biochem., 268, 4384–4397.CrossRefGoogle Scholar
  205. Yan, Q. Y., & Bennick, A. (1995). Identification of histatins as tannin-binding proteins in human saliva. Biochem. J., 311, 341–347.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Unidad de Nutrición y Bromatología Facultad de FarmaciaUniversidad de SalamancaE-37007 SalamancaSpain

Personalised recommendations