Flavanols, Flavonols and Dihydroflavonols



White Wine Grape Seed Grape Wine Grape Skin Glyoxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, S., Lee, E., Walker, A. R., Tanner, G. J., Larkin, P. J., & Ashton, A. R. (2003). The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J., 35, 624–636.CrossRefGoogle Scholar
  2. Alcalde-Eon, C., Escribano-Bailon, M., Santos-Buelga, C., & Rivas-Gonzalo, J. (2006). Changes in the detailed pigment composition of red wine during maturity and ageing – A comprehensive study Anal. Chim. Acta, 563, 238–254.CrossRefGoogle Scholar
  3. Alcalde-Eon, C., Escribano-Bailon, M., Santos-Buelga, C., & Rivas-Gonzalo, J. (2007). Identification of dimeric anthocyanins and new oligomeric pigments in red wine by means of HPLC-DAD-ESI/MSn. J. Mass Spectrom., 42, 735–748.CrossRefGoogle Scholar
  4. Alonso, E., Estrella, I., & Revilla, E. (1986). Presence of quercetin-3-O-glucuronoside in spanish table wines. J. Sci. Food Agric., 37, 1118–1120.CrossRefGoogle Scholar
  5. Atanasova, V., Fulcrand, H., Le Guerneve, C., Cheynier, V., & Moutounet, M. (2002a). Structure of a new dimeric acetaldehyde malvidin 3-glucoside condensation product. Tetrahedron Lett., 43, 6151–6153.CrossRefGoogle Scholar
  6. Atanasova, V., Fulcrand, H., Le Guernevé, C., Dangles, O., & Cheynier, V. (2002b). First evidence of acetaldehyde-induced anthocyanin polymerisation. Polyphenol Communications 2002. Marrakech, pp. 417–418.Google Scholar
  7. Baderschneider, B., & Winterhalter, P. (2001). Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J. Agric. Food Chem., 49, 2788–2798.CrossRefGoogle Scholar
  8. Bae, Y. S., Foo, L. Y., & Karchesy, J. J. (1994). GPC of natural procyanidin oligomers and polymers. Holzforschung, 48, 4–6.Google Scholar
  9. Baranowski, J. D., & Nagel, C. W. (1983). Kinetic of malvidin-3-glucoside condensation in wine model systems. J. Food Sci., 48, 419–421.CrossRefGoogle Scholar
  10. Bautista-Ortin, A. B., Martinez-Cutillas, A., Ros-Garcia, J. M., Lopez-Roca, J. M., & Gomez-Plaza, E. (2005). Improving colour extraction and stability in red wines: the use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol., 40, 867–878.CrossRefGoogle Scholar
  11. Baxter, N. J., Lilley, T. H., Haslam, E., & Williamson, M. P. (1997a). Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry, 36, 5566–5577.CrossRefGoogle Scholar
  12. Baxter, N. J., Lilley, T. H., Haslam, E., & Williamson, M. P. (1997b). Multiple interactions between polyphenols and a salivary proline-rich protein repeat results in complexation and precipitation. Biochemistry, 36, 5566–5577.CrossRefGoogle Scholar
  13. Berg, H. W. (1959). The effects of several fungal pectic enzyme preparations on grape musts and wines. Am. J. Enol. Vitic., 10, 130–134.Google Scholar
  14. Betes-Saura, C., Andres-Lacueva, C., & Lamuela-Raventos, R. M. (1996). Phenolics in white free run juices and wines from Penedes by High-performance liquid chromatography: Changes during vinification. J. Agric. Food Chem., 44, 3040–3046.CrossRefGoogle Scholar
  15. Bishop, P. B., & Nagel, C. W. (1984). Characterization of the condensation product of malvidin 3,5-diglucoside and catechin. J. Agric. Food Chem., 32, 1022–1026.CrossRefGoogle Scholar
  16. Bogs, J., Downey, M., Harvey, J., Ashton, A., Tanner, G., & Robinson, S. (2005). Proanthocyanidin synthesis and expression of genes encoding leuanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol., 139, 652–663.CrossRefGoogle Scholar
  17. Boido, E., Alcalde-Eon, C., Carrau, F., Dellacassa, E., & Rivas-Gonzalo, J. C. (2006). Aging effect on the pigment composition and color of Vitis vinifera L. Cv. Tannat wines. Contribution of the main pigment families to wine color. J. Agric. Food Chem., 54, 6692–6704.CrossRefGoogle Scholar
  18. Boissier, B., Lutin, F., Moutounet, M., & Vernhet, A. (2008). Particles deposition during the cross-flow microfiltration of red wines -incidence of the hydrodynamic conditions and of the yeast to fines ratio. Chem. Engin. Process., 47(3) 276–286Google Scholar
  19. Boukharta, M., Girardin, M., & Metche, M. (1988). Procyanidines galloylées du sarment de vigne (Vitis vinifera) separation et identification par chromatographie liquide haute performance et chromatographie en phase gazeuse. J. Chromatogr., 455, 406–409.CrossRefGoogle Scholar
  20. Boulton, D., Walle, U., & Walle, T. (1998). Extensive binding of the bioflavonoid quercetin to human plasma proteins. J. Pharmacy Pharmacol., 50, 243–249.Google Scholar
  21. Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am. J. Enol. Vitic., 52, 67–87.Google Scholar
  22. Bourzeix, M., Weyland, D., & Heredia, N. (1986). Etude des catéchines et des procyanidols de la grappe de raisin, du vin et d’autres dérivés de la vigne. Bull. OIV, 669–670, 1171–1253.Google Scholar
  23. Bradshaw, M. P., Cheynier, V., Scollary, G. R., & Prenzler, P. D. (2003). Defining the ascorbic acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-catechin. J. Agric. Food Chem., 51, 4126–4132.CrossRefGoogle Scholar
  24. Brouillard, R., & Dangles, O. (1993). Flavonoids and flower colour in Harborne, J. B. (Ed), The flavonoids. Advances in research since 1986, Chapman and Hall, pp. 565–588.Google Scholar
  25. Brouillard, R., & Dangles, O. (1994). Anthocyanin molecular interactions : the first step in the formation of new pigments during wine aging. Food Chem., 51, 365–371.CrossRefGoogle Scholar
  26. Calderon, P., VanBuren, J., & Robinson, W. (1968). Factors influencing the formation of precipitates and hazes by gelatin and condensed and hydrolyzable tannins. J. Agric. Food Chem., 16, 479–482.CrossRefGoogle Scholar
  27. Canals, R., Llaudy, M., Valls, J., Canals, J., & Zamora, F. (2005). Influence of ethanol concentration on the extraction of color and phenolic compounds from the skins and seeds of Tempranillo grapes at different stages of ripening. J. Agric. Food Chem., 53, 4019–4025.CrossRefGoogle Scholar
  28. Cantos, E., Espin, J., & Tomas-Barberan, F. (2002). Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. J. Agric. Food Chem., 50, 5691–5696.CrossRefGoogle Scholar
  29. Castellarin, S., Di Gaspero, G., Marconi, R., Nonis, A., Peterlunger, E., Paillard, S., Adam-Blondon, A., & Testolin, R. (2006). Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin based anthocyanins in berry skin. BMC Genomics, 7, 12.CrossRefGoogle Scholar
  30. Chamkha, M., Cathala, B., Cheynier, V., & Douillard, R. (2003). Phenolic composition of champagnes from Chardonnay and Pinot Noir vintages. J. Agric. Food Chem., 51, 3179–3184.CrossRefGoogle Scholar
  31. Charlton, A. J., Baxter, N. J., Lilley, T. H., Haslam, E., McDonald, C. J., & Williamson, M. P. (1996). Tannin interactions with a full-length human salivary proline-rich protein display a stronger affinity than with proline-rich repeats. FEBS Lett., 382, 289–292.CrossRefGoogle Scholar
  32. Charlton, A., Baxter, N. J., Khan, M. L., Moir, A. J. G., Haslam, E., Davis, A. P., & Williamson, M. P. (2002a). Polyphenol/peptide binding and precipitation. J. Agric. Food Chem., 50, 1593–1601.CrossRefGoogle Scholar
  33. Charlton, A. J., Haslam, E., & Williamson, M. P. (2002b). Multiple conformations of the proline-rich-protein/epigallocatechin gallate complex determined by time-averaged nuclear overhauser effects. J. Am. Chem. Soc., 124, 9899–9905.CrossRefGoogle Scholar
  34. Cheynier, V., & Ricardo Da Silva, J. M. (1991). Oxidation of grape procyanidins in model solutions containing trans-caffeoyl tartaric acid and grape polyphenoloxidase. J. Agric. Food Chem., 39, 1047–1049.CrossRefGoogle Scholar
  35. Cheynier, V., & Rigaud, J. (1986). HPLC separation and characterization of flavonols in the skins of Vitis vinifera var. Cinsault. Am. J. Enol. Vitic., 37, 248–252.Google Scholar
  36. Cheynier, V., & Van Hulst, M. W. (1988). Oxidation of trans-caftaric acid and 2-S-glutathionyl caftaric acid in model solutions. J. Agric. Food Chem., 36, 10–15.CrossRefGoogle Scholar
  37. Cheynier, V., Osse, C., & Rigaud, J. (1988). Oxidation of grape juice phenolic compounds in model solutions. J. Food Sci., 53, 1729–1732.CrossRefGoogle Scholar
  38. Cheynier, V., Basire, N., & Rigaud, J. (1989a). Mechanism of trans-caffeoyl tartaric acid and catechin oxidation in model solutions containing grape polyphenoloxidase. J. Agric. Food Chem., 37, 1069–1071.CrossRefGoogle Scholar
  39. Cheynier, V., Rigaud, J., Souquet, J. M., Barillère, J. M., & Moutounet, M. (1989b). Effect of pomace contact and hyperoxidation on the phenolic composition and quality of Grenache and Chardonnay wines. Am. J. Enol. Vitic., 40, 36–42.Google Scholar
  40. Cheynier, V., Fulcrand, H., Guyot, S., Oszmianski, J., & Moutounet, M. (1995). Reactions of enzymically generated quinones in relation to browning in grape musts and wines in Lee, C. Y., & Whitaker, J. R. (Eds), Enzymatic browning and its prevention in foods, American Chemical Society, pp. 130–143.Google Scholar
  41. Cheynier, V., Fulcrand, H., Sarni, P., & Moutounet, M. (1997a). Reactivity of phenolic compounds in wine: Diversity of mechanisms and resulting products. In Vino analytica scientia. Bordeaux, pp. 143–154.Google Scholar
  42. Cheynier, V., Prieur, C., Guyot, S., Rigaud, J., & Moutounet, M. (1997b). The structures of tannins in grapes and wines and their interactions with proteins in Watkins, T. R. (Ed), Wine. Nutritional and therapeutic benefits, American Chemical Society, pp. 81–93.Google Scholar
  43. Cheynier, V., Es-Safi, N.-E., & Fulcrand, H. (1999a). Structure and colour properties of anthocyanins and related pigments.International Congress on Pigments in Food and Technology. Sevilla (Spain), pp. 23–35.Google Scholar
  44. Cheynier, V., Souquet, J.-M., Roux, E. L., Guyot, S., & Rigaud, J. (1999b). Size separation of condensed tannins by normal-phase high-performance liquid chromatography in Packer, L. (Ed), Methods Enzymol., Volume 299. Oxidants and antioxidants. Part A., Academic Press, pp. 178–184.Google Scholar
  45. Cheynier, V., Dueñas-Paton, M., Salas, E., Maury, C., Souquet, J.-M., Sarni-Manchado, P., & Fulcrand, H. (2006). Structure and properties of wine pigments and tannins. Am. J. Enol. Vitic., 57, 298–305.Google Scholar
  46. Clark, A. C., & Scollary, G. R. (2002). Copper(II)-mediated oxidation of (+)-catechin in a model white wine system. Aust. J. Grape Wine Res., 8, 186–195.CrossRefGoogle Scholar
  47. Clark, A. C., Prenzler, P. D., & Scollary, G. R. (2003). The role of copper(II) in the bridging reactions of (+)-catechin by glyoxylic acid in a model white wine. J. Agric. Food Chem., 51, 6204–6210.CrossRefGoogle Scholar
  48. Cooper, J. J., & Marshall, A. G. (2001). Electrospray ionisation Fourier transform mass spectrometric analysis of wine. J. Agric. Food Chem., 49, 5710–5718.CrossRefGoogle Scholar
  49. Cortell, J., & Kennedy, J. A. (2006). Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) Pinot Noir fruit and extraction in a model system. J. Agric. Food Chem., 54, 8510–8520.CrossRefGoogle Scholar
  50. Cortell, J. M., Halbleib, M., Gallagher, A. V., Righetti, T. L., & Kennedy, J. A. (2005). Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins. J. Agric. Food Chem., 53, 5798–5808.CrossRefGoogle Scholar
  51. Czochanska, Z., Foo, L., & Porter, L. (1979a). Compositional changes in lower molecular weight flavans during grape maturation. Phytochemistry, 18, 1819–1822.CrossRefGoogle Scholar
  52. Czochanska, Z., Foo, L. Y., Newman, R. H., Porter, L. J., Thomas, W. A., & Jones, W. T. (1979b). Direct proof of a homogeneous polyflavan-3-ol structure for polymeric proanthocyanidins. J. Chem. Soc. Chem. Comm., 8, 375–377.CrossRefGoogle Scholar
  53. Czochanska, Z., Foo, L. Y., Newman, R. H., & Porter, J. L. (1980). Polymeric proanthocyanidins. Stereochemistry, structural units and molecular weight. J. Chem. Soc. Perkin Trans. I, 2278–2286.CrossRefGoogle Scholar
  54. de Pascual-Teresa, S., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (2000). Prodelphinidins and related flavanols in wine. Int. J. Food Sci. Technol., 35, 33–40.CrossRefGoogle Scholar
  55. Derdelinckx, G., & Jerumanis, J. (1984). Separation of malt hop proanthocyanidins on Fractogel TSK HW-40 (S). J. Chromatogr., 285, 231–234.CrossRefGoogle Scholar
  56. Doco, T., Williams, P., & Cheynier, V. (2007). Effect of flash release and pectinolytic enzyme treatments on wine polysaccharide composition. J. Agric. Food Chem., 55, 6643–6649.CrossRefGoogle Scholar
  57. Downey, M., Harvey, J., & Robinson, S. (2003a). Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Austr. J. Grape Wine Res., 9, 15–27.CrossRefGoogle Scholar
  58. Downey, M., Harvey, J., & Robinson, S. (2003b). Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Austr. J Grape Wine Res., 9, 110–121.CrossRefGoogle Scholar
  59. Downey, M. O., Harvey, J. S., & Robinson, S. P. (2004). The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust. J. Grape Wine Res., 10, 55–73.Google Scholar
  60. Drinkine, J., Glories, Y., & Saucier, C. (2005). (+)catechin-aldehyde condensations: competition between acetaldehyde and glyoxylic acid. J. Agric. Food Chem., 53, 7552–7558.CrossRefGoogle Scholar
  61. Drinkine, J., Lopes, P., Kennedy, J., Teissedre, P., & Saucier, C. (2007a). Analysis of ethylidene-bridged flavan-3-ols in wine. J. Agric. Food Chem., 55, 1109–1116.CrossRefGoogle Scholar
  62. Drinkine, J., Lopes, P., Kennedy, J., Teissedre, P., & Saucier, C. (2007b). Ethylidene-bridged flavan-3-ols in red wine and correlation with wine age. J. Agric. Food Chem., 55, 6292–6299.CrossRefGoogle Scholar
  63. Ducasse, M.-A., Souquet, J.-M., Fulcrand, H., & Cheynier, V. (2007). Impact des traitements enzymatiques sur la composition phénoliques des vins rouges. 8th Symposium International d’Œnologie. Bordeaux, France.Google Scholar
  64. Duenas, M., Fulcrand, H., & Cheynier, V. (2006a). Formation of anthocyanin-flavanol adducts in model solutions. Anal. Chim. Acta., 563, 15–25.CrossRefGoogle Scholar
  65. Duenas, M., Salas, E., Cheynier, V., Dangles, O., & Fulcrand, H. (2006b). UV-Visible spectroscopic investigation of the 8-8-methylmethine catechin-malvidin 3-glucoside pigments in aqueous solution : structural transformations and molecular complexation with chlorogenic acid. J. Agric. Food Chem., 54, 189–196.CrossRefGoogle Scholar
  66. Dufour, C., & Bayonove, C. (1999). Interactions between wine polyphenols and aroma substances. An insight at the molecular level. J. Agric. Food Chem., 47, 678–684.CrossRefGoogle Scholar
  67. Dufour, C., & Dangles, O. (2005). Flavonoid-serum albumin complexation: determination ofbinding constants and binding sites by fluorescence spectroscopy. Biochim. Biophys. Acta-General Subjects 1721, 164–173.CrossRefGoogle Scholar
  68. Dupin, I. V. S., McKinnon, B. M., Ryan, C., Boulay, M., Markides, A. J., Jones, G. P., Williams, P. J., & Waters, E. J. (2000). Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: their release during fermentation and lees contact and a proposal for their mechanism of action. J. Agric. Food Chem., 48, 3098–3105.CrossRefGoogle Scholar
  69. Escribano-Bailon, T., Alvarez-Garcia, M., Rivas-Gonzalo, J. C., Heredia, F. J., & Santos-Buelga, C. (2001). Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin-3-O-glucoside and (+)-catechin. J. Agric. Food Chem., 49, 1213–1217.CrossRefGoogle Scholar
  70. Es-Safi, N., Fulcrand, H., Cheynier, V., & Moutounet, M. (1999a). Competition between (+)-catechin and (–)-epicatechin in acetaldehyde-induced polymerization of flavanols. J. Agric. Food Chem., 47, 2088–2095.CrossRefGoogle Scholar
  71. Es-Safi, N. E., Guerneve, C. L., Fulcrand, H., Cheynier, V., & Moutounet, M. (1999b). New polyphenolic compounds with xanthylium skeletons formed through reaction between (+)-catechin and glyoxylic acid. J. Agric. Food Chem., 47, 5211–5217.CrossRefGoogle Scholar
  72. Es-Safi, N. E., Cheynier, V., & Moutounet, M. (2000). Study of the reactions between (+)-catechin and furfural derivatives in the presence or absence of anthocyanins and their implication in food color change. J. Agric. Food Chem., 48, 5946–5954.CrossRefGoogle Scholar
  73. Fernandez-Zurbano, P., Ferreira, V., Pena, C., Escudero, A., & Cacho, J. (1999). Effects of maceration time and pectolytic enzymes added during maceration on the phenolic composition of must. J. Food Sci. Technol. Internat., 5, 319–325.CrossRefGoogle Scholar
  74. Fournand, D., Vicens, A., Sidhoum, L., Souquet, J.-M., Moutounet, M., & Cheynier, V. (2006). Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages. J. Agric. Food Chem., 54, 7331–7338.CrossRefGoogle Scholar
  75. Fulcrand, H., Doco, T., Es-Safi, N., Cheynier, V., & Moutounet, M. (1996). Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography ion spray mass spectrometry. J. Chromatogr., 752, 85–91.CrossRefGoogle Scholar
  76. Fulcrand, H., Remy, S., Souquet, J.-M., Cheynier, V., & Moutounet, M. (1999). Study of wine tannin oligomers by on-line liquid chromatography electrospray ionisation mass spectrometry. J. Agric. Food Chem., 47, 1023–1028.CrossRefGoogle Scholar
  77. Fulcrand, H., Morel-Salmi, C., Poncet-Legrand, C., Vernhet, A., & Cheynier, V. (2006). Tannins: From reactions to complex supramolecular structures. Austr. J. Grape Wine Res. Adélaïde, Australie, pp. 12–17.Google Scholar
  78. Gao, L., Girard, B., Mazza, G., & Reynolds, A. G. (1997). Changes in anthocyanins and color characteristics of Pinot Noir wines during different vinification processes. J. Agric. Food Chem., 45, 2003–2008.CrossRefGoogle Scholar
  79. Gerbaud, V., & Gabas, N. (1997). Influence of wine polysaccharides and polyphenols on the crystallization of potassium hydrogen tartrate. J. Int. Sci. Vigne Vin, 31, 65–83.Google Scholar
  80. Guyot, S., Pellerin, P., Brillouet, J., Moutounet, M., & Cheynier, V. (1996a). Inhibition ofb-glucosidase (Amygdalae Dulces) by (+)-catechin oxidation products and procyanidin dimers. Biosci., Biotech. Biochem., 60, 1131–1135.Google Scholar
  81. Guyot, S., Vercauteren, J., & Cheynier, V. (1996b). Colourless and yellow dimers resulting from (+)-catechin oxidative coupling catalysed by grape polyphenoloxidase. Phytochemistry, 42, 1279–1288.CrossRefGoogle Scholar
  82. Hagerman, A. E. (1989). Chemistry of tannin-protein complexation in Hemingway, R. W., & Karchesy, J. J. (Eds), Chemistry and significance of condensed tannins, Plenum Press, pp. 323–331.Google Scholar
  83. Haslam, E. (1980). In vino veritas: oligomeric procyanidins and the ageing of red wines. Phytochemistry, 19, 2577–2582.CrossRefGoogle Scholar
  84. Haslam, E., & Lilley, T. H. (1988). Natural astringency in foodstuffs. A molecular interpretation. Crit. Rev. Food Sci. Nutr., 27, 1–40.Google Scholar
  85. Haslam, E., Lilley, T. H., Warminski, E., Liao, H., Cai, Y., Martin, R., Gaffney, S. H., Goulding, P. N., & Luck, G. (1992). Polyphenol complexation. A study in molecular recognition. in Ho, C.-T., Lee, C. Y., & Huang, M.-T. (Eds), Phenolic compounds in food and their effects on health, American Chemical Society, pp. 8–50.Google Scholar
  86. Hathway, D. E., & Seakins, J. W. T. (1957). Autoxidation of polyphenols. Part III. Autoxidation in neutral aqueous solutions of flavans related to catechin. J. Chem. Soc., 300, 1562–1566.CrossRefGoogle Scholar
  87. Hayasaka, Y., & Kennedy, J. A. (2003). Mass spectrometric evidence for the formation of pigmented polymers in red wine. Austr. J. Grape Wine Res., 9, 210–220.CrossRefGoogle Scholar
  88. Hemingway, R. W., Steynberg, P. J., Steynberg, J. P., & Hatano, T. (1999). NMR studies on the conformation of polyflavanoids and their association with proteins in Argyropoulos, D. S. (Ed), Advances in lignocellulosics characterization, TAPPI Press, pp. 157–178.Google Scholar
  89. Hmamouchi, M., Es-Safi, N., Lahrichi, M., Fruchier, A., & Essassi, E. M. (1996). Flavones and flavonols in leaves of some Moroccan Vitis vinifera cultivars. J. Agric. Food Chem., 47, 186–192.Google Scholar
  90. Jobstl, E., Howse, J. R., Fairclough, J. P. A., & Williamson, M. P. (2006). Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J. Agric. Food Chem., 54, 4077–4081.CrossRefGoogle Scholar
  91. Jurd, L. (1967). Anthocyanidins and related compounds-XI. Catechin-flavylium salt condensation reactions. Tetrahedron, 23, 1057–1064.CrossRefGoogle Scholar
  92. Jurd, L. (1969). Review of polyphenol condensation reactions and their possible occurrence in the aging of wines. Am. J. Enol. Vitic., 20, 195–197.Google Scholar
  93. Jurd, L., & Somers, T. C. (1970). The formation of xanthylium salts from proanthocyanidins. Phytochemistry, 9, 419–427.CrossRefGoogle Scholar
  94. Jurd, L., & Waiss, A. C. (1965). Anthocyanins and related compounds-VI Flavylium salt-phloroglucinol condensation product. Tetrahedron, 21, 1471–1483.CrossRefGoogle Scholar
  95. Kawamoto, H., & Nakatsubo, F. (1997). Effects of environmental factors on two-stage tannin-protein co-precipitation. Phytochemistry, 46, 479–483.CrossRefGoogle Scholar
  96. Kelm, M. A., Johnson, J. C., Robbins, R. J., Hammerstone, J. F., & Schmitz, H. H. (2006). High-Performance Liquid Chromatography Separation and Purification of Cacao (Theobroma cacao L.) Procyanidins According to Degree of Polymerization Using a Diol Stationary Phase. J. Agric. Food Chem., 54, 1571–1576.CrossRefGoogle Scholar
  97. Kennedy, J. A., Hayasaka, Y., Vidal, S., Waters, E. J., & Jones, G. P. (2001). Composition of grape skin proanthocyanidins at different stages of berry development. J. Agric. Food Chem., 49, 5348–5355.CrossRefGoogle Scholar
  98. Kennedy, J. A., Matthews, M. A., & Waterhouse, A. L. (2002). Effect of maturity and vine water status on grape skin and wine flavonoids. Am. J. Enol. Vitic., 53, 268–274.Google Scholar
  99. Laborde, B., Moine-Ledoux, V., Richard, T., Saucier, C., Dubourdieu, D., & Monti, J.-P. (2006). PVPP-Polyphenol complexes: A molecular approach. J. Agric. Food Chem., 54, 4383–4389.CrossRefGoogle Scholar
  100. Le Bourvellec, C., Guyot, S., & Renard, C. M. G. C. (2004). Non-covalent interaction between procyanidins and apple cell wall material. Part I – Effect of some environmental parameters. Biochim. Biophys. Acta, 1672, 192–202.Google Scholar
  101. Le Bourvellec, C., Bouchet, B., & Renard, C. M. G. C. (2005). Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides. Biochim. Biophys. Acta, 1725, 10–18.Google Scholar
  102. Le Bourvellec, C., Picot, M., & Renard, C. (2006). Size-exclusion chromatography of procyanidins: Comparison between apple and grape procyanidins and application to the characterization of fractions of high degrees of polymerization. Anal. Chim. Acta, 563, 33–43.CrossRefGoogle Scholar
  103. Lea, A. G. H., & Timberlake, C. F. (1974). The phenolics of ciders.1.Procyanidins. J. Sci. Food Agric., 25, 1537–1545.CrossRefGoogle Scholar
  104. Lea, A. G. H., Bridle, P., Timberlake, C. F., & Singleton, V. L. (1979). The procyanidins of white grapes and wines. Am. J. Enol. Vitic., 30, 289–300.Google Scholar
  105. Lee, C. Y., & Jaworski, A. (1987). Phenolic compounds in white grapes grown in New York. Am. J. Enol. Vitic., 38, 277–281.Google Scholar
  106. Lee, C. Y., & Jaworski, A. W. (1990). Identification of some phenolics in white grapes. Am. J. Enol. Vitic., 41, 87–89.Google Scholar
  107. Liao, H., Cai, Y., & Haslam, E. (1992). Polyphenol interactions. Anthocyanins: co-pigmentation and colour changes in red wines. J. Sci. Food Agric., 59, 299–305.CrossRefGoogle Scholar
  108. Luck, G., Liao, H., Murray, N. J., Grimmer, H. R., Warminski, E. E., Willamson, M. P., Lilley, T. H., & Haslam, E. (1994). Polyphenols, astringency and prolin-rich proteins. Phytochemistry, 37, 357–371.CrossRefGoogle Scholar
  109. Malien-Aubert, C., Dangles, O., & Amiot, M.-J. (2002). Influence of procyanidins on the color stability of oenin solutions. J. Agric. Food Chem., 50, 3299–3305.CrossRefGoogle Scholar
  110. Mané, C. (2007). Phénomènes oxydants et composés phénoliques dans les vins blancs de Champagne: développements méthodologiques pour l’analyse des polymères, Formation Doctorale Sciences des Aliments, Montpellier Supagro, p. 279.Google Scholar
  111. Mané, C., Sommerer, N., Yalcin, T., Cheynier, V., Cole, R. B., & Fulcrand, H. (2007a). Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Anal. Chem., 79, 2239–2248.CrossRefGoogle Scholar
  112. Mané, C., Souquet, J. M., Olle, D., Verries, C., Veran, F., Mazerolles, G., Cheynier, V., & Fulcrand, H. (2007b). Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of champagne grape varieties. J. Agric. Food Chem., 55, 7224–7233.CrossRefGoogle Scholar
  113. Masa, A., Vilanova, M., & Pomar, F. (2007). Varietal differences among the flavonoid profile of white grape cultivars studied by high performance liquid chromatography. J. Chromatogr. A 1164, 291–297.CrossRefGoogle Scholar
  114. Mateus, N., de Pascual-Teresa, S., Rivas-Gonzalo, J., Santos-Buelga, C., & De Freitas, V. (2002). Structural diversity of anthocyanin-derived pigments in port wines. Food Chem., 76, 335–342.CrossRefGoogle Scholar
  115. Mateus, N., Silva, A. M. S., Rivas-Gonzalo, J. C., Santos-Buelga, C., & De Freitas, V. (2003). A new class of blue anthocyanin-derived pigments isolated from red wines. J. Agric. Food Chem., 51, 1919–1923.CrossRefGoogle Scholar
  116. Matthews, A., Grbin, P. R., & Jiranek, V. (2006). A survey of lactic acid bacteria for enzymes of interest to oenology. Austr. J. Grape Wine Res., 12, 235–244.CrossRefGoogle Scholar
  117. Mattivi, F., Guzzon, R., Vrhovsek, U., Stefanini, M., & Velasco, R. (2006). Metabolite Profiling of Grape: Flavonols and Anthocyanins. J. Agric. Food Chem., 54, 7692–7702.CrossRefGoogle Scholar
  118. Maury, C., Sarni-Manchado, P., Lefebvre, S., Cheynier, V., & Moutonet, M. (2001). Influence of fining with different molecular weight gelatins on proanthocyanidin composition and perception of wines. Am. J. Enol. Vitic., 52, 140–145.Google Scholar
  119. Maury, C., Sarni-Manchado, P., Lefebvre, S., Cheynier, V., & Moutounet, M. (2003). Influence of fining with plant proteins on proanthocyanidin composition of red wines. Am. J. Enol. Vitic., 54, 105–111.Google Scholar
  120. Mazauric, J.-P., & Salmon, J.-M. (2005). Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines. J. Agric. Food Chem., 53, 5647–5653.CrossRefGoogle Scholar
  121. Mazauric, J.-P., & Salmon, J.-M. (2006). Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees. J. Agric. Food Chem., 54, 3876–3881.CrossRefGoogle Scholar
  122. Mazza, G., & Miniati, E. (1993). Grapes in Mazza, G., & Miniati, E. (Eds), Anthocyanins in fruits, vegetables and grains, CRC Press, pp. 149–199.Google Scholar
  123. McManus, J. P., Davis, K. G., Beart, J. E., Galffney, S. H., Lilley, T. H., & Haslam, E. (1985). Polyphenol interactions. Part 1. Introduction; some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc. Perkin Trans, II, 1429–1438.Google Scholar
  124. Mirabel, M., Glories, Y., Pianet, I., & Dufourc, E. J. (1999a). Towards high resolution H-1 NMR spectra of tannin colloidal aggregates. J. Chimie Physique Physico-Chimie Biologique 96, 1629–1634.CrossRefGoogle Scholar
  125. Mirabel, M., Saucier, C., Guerra, C., & Glories, T. (1999b). Copigmentation in model wine solutions: Occurrence and relation to wine aging. Am. J. Enol. Vitic., 50, 211–218.Google Scholar
  126. Monagas, M., Gómez-Cordovés, C., Bartolomé, B., Laureano, O., & Silva, J. M. R. D. (2003). Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem., 51, 6475–6481.CrossRefGoogle Scholar
  127. Morel-Salmi, C., Souquet, J. M., Bes, M., & Cheynier, V. (2006). The effect of flash release treatment on phenolic extraction and wine composition. J. Agric. Food Chem.,54, 4270–4276.CrossRefGoogle Scholar
  128. Murray, N. J., Williamson, M. P., Lilley, T. H., & Haslam, E. (1994). Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. Eur. J. Biochem., 219, 923–935.CrossRefGoogle Scholar
  129. Nagel, C. W., & Wulf, L. W. (1979). Changes in the anthocyanins, flavonoids and hydroxycinnamic acid esters during fermentation and aging of merlot and cabernet sauvignon. Am. J. Enol. Vitic., 30, 111–116.Google Scholar
  130. Nakajima, J. J., Tanaka, Y., Yamazaki, M., & Saito, K. (2001). Reaction mechanism from leucoanthocyanidin to anthocyanin-3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem., 276, 25797–25803.CrossRefGoogle Scholar
  131. Oh, H. I., Hoff, J. E., Armstrong, G. S., & Haff, L. A. (1980). Hydrophobic interactions in tannin-protein complexes. J. Agric. Food Chem., 28, 394–398.CrossRefGoogle Scholar
  132. Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre- and post-véraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic., 53, 261–267.Google Scholar
  133. Oszmianski, J., Cheynier, C., & Moutounet, M. (1996). Iron-catalyzed oxidation of (+)-catechin in wine-like model solutions. J. Agric. Food Chem., 44, 1972–1975.CrossRefGoogle Scholar
  134. Ough, C., & Crowell, E. (1979). Pectic-enzyme treatment of white grapes: temperature, variety and skin-contact time factors. Am. J. Enol. Vitic., 30, 22–27.Google Scholar
  135. Ough, C. S., Noble, A. C., & Temple, D. (1975). Pectic Enzyme Effects on Red Grapes. Am. J. Enol. Vitic., 26, 195–200.Google Scholar
  136. Outtrup, H. (1989). Haze active peptides in beer. E.B.C. Congress, pp. 609–616.Google Scholar
  137. Pardo, F., Salinas, M. R., Alonso, G. L., Navarro, G., & Huerta, M. D. (1999). Effect of diverse enzyme preparations on the extraction and evolution of phenolic compounds in red wines. Food Chem., 67, 135–142.CrossRefGoogle Scholar
  138. Pascal, C., Poncet-Legrand, C., Sarni-Manchado, P., Cheynier, V., & Vernhet, A. (2006). Effect of ionic strength, tartaric acid and ethanol on the interactions between flavan-3-ols and salivary proline rich proteins. Macromolecules and Secondary metabolites in Grapevine and Wines. Reims.Google Scholar
  139. Pascal, C., Poncet-Legrand, C., Imberty, A., Gautier, C., Sarni-Manchado, P., Cheynier, V., & Vernhet, A. (2007). Interactions between a non glycosylated human proline-rich protein and flavan-3-ols are affected by protein concentration and polyphenol/protein ratio. J. Agric. Food Chem., 55, 4895–4901.CrossRefGoogle Scholar
  140. Pellerin, P., & Cabanis, J.-C. (1998). Les glucides in Flanzy, C. (Ed), Oenologie, Lavoisier Tec & Doc, pp. 40–92.Google Scholar
  141. Pereira, G. E., Gaudillere, J.-P., Pieri, P., Hilbert, G., Maucourt, M., Deborde, C., Moing, A., & Rolin, D. (2006). Microclimate Influence on Mineral and Metabolic Profiles of Grape Berries. J. Agric. Food Chem., 54, 6765–6775.CrossRefGoogle Scholar
  142. Perez-Maldonado, R. A., Norton, B. W., & Kerven, G. L. (1995). Factors affecting in vitro formation of tannin -protein complexes. J. Sci. Food Agric., 69, 291–298.CrossRefGoogle Scholar
  143. Pierpoint, W. S. (1969). o-quinones formed in plant extracts : their reactions with amino acids and peptides. Biochem. J. 112, 609–617.Google Scholar
  144. Piretti, M. V., Ghedini, M., & Serrazanetti, G. (1976). Isolation and identification of the polyphenolic and terpenoid constituents of Vitis vinifera. v. Trebbiano variety. Annali di Chimica, 66, 429–437.Google Scholar
  145. Pissara, J., Mateus, N., Rivas-Gonzalo, J., Santos-Buelga, C., & De Freitas, V. (2003). Reaction between malvidin 3-glucoside and (+)-catechin in model solutions containing different aldehydes. J. Food Sci., 68, 476–481.CrossRefGoogle Scholar
  146. Poncet-Legrand, C., Cartalade, D., Putaux, J.-L., Cheynier, V., & Vernhet, A. (2003). Flavan-3-ol aggregation in model ethanolic solutions: incidence of polyphenol structure, concentration ethanol content and ionic strength. Langmuir, 19, 10563–10572.CrossRefGoogle Scholar
  147. Poncet-Legrand, C., Edelmann, A., Putaux, J.-L., Cartalade, D., Sarni-Manchado, P., & Vernhet, A. (2006). Poly(L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocolloids, 20, 687–697.CrossRefGoogle Scholar
  148. Poncet-Legrand, C., Gautier, C., Cheynier, V., & Imberty, A. (2007). Interactions between flavan-3-ols and poly(L-proline) studied by isothermal titration calorimetry: Effect of the tannin structure. J. Agric. Food Chem., 55, 9235–9240.CrossRefGoogle Scholar
  149. Price, S. F., Breen, P. J., Vallado, M., & Watson, B. T. (1995). Cluster sun exposure and quercetin in pinot noir grapes and wine. Am. J. Enol. Vitic., 46, 187–194.Google Scholar
  150. Prieur, C., Rigaud, J., Cheynier, V., & Moutounet, M. (1994). Oligomeric and polymeric procyanidins from grape seeds. Phytochemistry, 36, 781–784.CrossRefGoogle Scholar
  151. Quideau, S., Jourdes, M., Saucier, C., Glories, Y., Pardon, P., & Baudry, C. (2003). DNA topoisomerase inhibitor acutissimin A and other flavano-ellagitannins in red wine. Angew. Chem. Int. Ed., 42, 6012–6014.CrossRefGoogle Scholar
  152. Remy, S. (1999). Caractérisation des composés phénoliques polymériques des vins rouges, INAPG, pp. 199.Google Scholar
  153. Remy, S., Fulcrand, H., Labarbe, B., Cheynier, V., & Moutounet, M. (2000). First confirmation in red wine of products resulting from direct anthocyanin-tannin reactions. J. Sci. Food Agric., 80, 745–751.CrossRefGoogle Scholar
  154. Remy-Tanneau, S., Guerneve, C. L., Meudec, E., & Cheynier, V. (2003). Characterization of a colorless anthocyanin-flavan-3-ol dimer containing both carbon-carbon and ether interflavanoid linkages by NMR and mass spectrometries. J. Agric. Food Chem., 51, 3592–3597.CrossRefGoogle Scholar
  155. Renard, C. M. G. C., Baron, A., Guyot, S., & Drilleau, J. (2001). Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. Int. J. Biol. Macromolecules, 29, 115–125.CrossRefGoogle Scholar
  156. Ribéreau-Gayon, P. (1964). Les composés phénoliques du raisin et du vin II. Les flavonosides et les anthocyanosides. Ann. Physiol. Vég. 6, 211–242.Google Scholar
  157. Ribéreau-Gayon, P. (1982). The anthocyanins of grapes and wines in Markakis, P. (Ed), Anthocyanins as food colors, Academic Press, pp. 209–244.Google Scholar
  158. Ricardo da Silva, J. M., Bourzeix, M., Cheynier, V., & Moutounet, M. (1991a). Procyanidin composition of Chardonnay, Mauzac and Grenache blanc grapes. Vitis, 30, 245–252.Google Scholar
  159. Ricardo da Silva, J. M., Cheynier, V., Souquet, J.-M., Moutounet, M., Cabanis, J.-C., & Bourzeix, M. (1991b). Interaction of grape seed procyanidins with various proteins in relation to wine fining. J. Sci. Food Agric., 57, 111–125.CrossRefGoogle Scholar
  160. Ricardo da Silva, J. M., Rigaud, J., Cheynier, V., Cheminat, A., & Moutounet, M. (1991c). Procyanidin dimers and trimers from grape seeds. Phytochemistry, 30, 1259–1264.CrossRefGoogle Scholar
  161. Ricardo da Silva, J. M., Cheynier, V., Samson, A., & Bourzeix, M. (1993). Effect of pomace contact, carbonic maceration and hyperoxidation on the procyanidin composition of Grenache blanc wines. Am. J. Enol. Vitic., 44, 168–172.Google Scholar
  162. Richard-Forget, F., Rouet-Mayer, M.-A., Goupy, P. M., Philippon, J., & Nicolas, J. J. (1992). Oxidation of chlorogenic acid, catechins, and 4-methylcatechol in model solutions by apple polyphenol oxidase. J. Agric. Food Chem., 40, 2114–2122.CrossRefGoogle Scholar
  163. Rigaud, J., Escribano-Bailon, M. T., Prieur, C., Souquet, J.-M., & Cheynier, V. (1993). Normal-phase high-performance liquid chromatographic separation of procyanidins from cacao beans and grape seeds. J. Chromatogr. A, 654, 255–260.CrossRefGoogle Scholar
  164. Riou, V., Vernhet, A., Doco, T., & Moutounet, M. (2002). Aggregation of grape seed tannins in model – effect of wine polysaccharides. Food Hydrocolloids, 16, 17–23.CrossRefGoogle Scholar
  165. Rodriguez Montealegre, R., Romero Peces, R., Chacon Vozmediano, J. L., Martinez Gascuena, J., & Garcia Romero, E. (2006). Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in warm climates. J. Food Compos. Anal., 19, 687–693.CrossRefGoogle Scholar
  166. Rodriguez-Clemente, R., & Correa-Gorospe, I. (1988). Structural, morphological and kinetic aspects of potassium hydrogen tartrate precipitation from wines and ethanolic solutions. Am. J. Enol. Vitic., 30, 169–179.Google Scholar
  167. Roggero, J. P., Larice, J. L., Rocheville Divorne, C., Archier, P., & Coen, S. (1988). Composition anthocyanique des cépages. I : Essai de classification par analyse en composantes principales et par analyse factorielle discriminante. Rev. F. Oenol., 112, 41–48.Google Scholar
  168. Romeyer, F., Macheix, J. J., & Sapis, J. C. (1986). Changes and importance of oligomeric procyanidins during maturation of grape seeds. Phytochemistry, 25, 219–221.CrossRefGoogle Scholar
  169. Salas, E., Fulcrand, H., Meudec, E., & Cheynier, V. (2003). Reactions of anthocyanins and tannins in model solutions. J. Agric. Food Chem., 51, 7951–7961.CrossRefGoogle Scholar
  170. Salas, E., Atanasova, V., Poncet-Legrand, C., Meudec, E., Mazauric, J., & Cheynier, V. (2004). Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Anal. Chim. Acta, 513, 325–332.CrossRefGoogle Scholar
  171. Salas, E., Dueñas, M., Schwarz, M., Winterhalter, P., Cheynier, V., & Fulcrand, H. (2005). Characterization of pigments from different high speed countercurrent chromatography wine fractions. J. Agric. Food Chem., 53, 4536–4546.CrossRefGoogle Scholar
  172. Santos-Buelga, C., Bravo-Haro, S., & Rivas-Gonzalo, J. (1995). Interactions between catechin and malvidin-3-monoglucoside in model solutions. Z. Lebens.-Unter.Forsch., 201.Google Scholar
  173. Sarni-Manchado, P., & Cheynier, V. (2002). Study of noncovalent complexation between catechin derivatives and peptide by electrospray ionization-mass spectrometry (ESI-MS). J. Mass Spectrom., 37, 609–616.CrossRefGoogle Scholar
  174. Sarni-Manchado, P., Deleris, A., Avallone, S., Cheynier, V., & Moutounet, M. (1999). Analysis and characterization of wine condensed tannins precipitated by protein used as fining agent in enology. Am. J. Enol. Vitic., 50, 81–86.Google Scholar
  175. Saucier, C., Bourgeaois, G., Vitry, C., Roux, D., & Glories, Y. (1997a). Characterization of (+)-catechin-acetaldehyde polymers: A model for colloidal state of wine polyphenols. J. Agric. Food Chem., 45, 1045–1049.CrossRefGoogle Scholar
  176. Saucier, C., Guerra, C., Pianet, I., Laguerre, M., & Glories, Y. (1997b). (+)catechin-acetaldehyde condensation products in relation to wine ageing. Phytochemistry, 46, 229–234.CrossRefGoogle Scholar
  177. Saucier, C., Roux, D., & Glories, Y. O., Symp. Int. Oenol., 5th Meeting; Tec & Doc – Lavoisier: Paris, 1996. (1996). Stabilité colloïdale de polymères catéchiques: influence des polysaccharides in Lonvaud-Funel, A. (Ed), Oenologie95, Lavoisier, Tec et Doc, pp. 395–400.Google Scholar
  178. Sausse, P., Aguie-Beghin, V., & Douillard, R. (2003). Effects of epigallocatechin gallate on beta-casein adsorption at the air/water interface. Langmuir, 19, 737–743.CrossRefGoogle Scholar
  179. Siebert, K. J., Carrasco, A., & Lynn, P. Y. (1996). Formation of protein-polyphenol haze in beverages. J. Agric. Food Chem., 44, 1997–2005.CrossRefGoogle Scholar
  180. Simpson, R. F. (1982). Factors affecting oxidative browning of white wine. Vitis, 21, 233–239.Google Scholar
  181. Singleton, V. L., & Draper, D. (1964). The transfer of polyphenolic compounds from grape seeds into wines. Am. J. Enol. Vitic., 15, 34–40.Google Scholar
  182. Smith, V. K., Ndou, T. T., & Warner, I. M. (1994). Spectroscopic study of the interaction of catechin with a-, b- and g- cyclodextrins. J. Physical Chem., 98, 8627–8631.CrossRefGoogle Scholar
  183. Somers, T. C. (1971). The polymeric nature of wine pigments. Phytochemistry, 10, 2175–2186.CrossRefGoogle Scholar
  184. Somers, T. C., & Pocock, K. F. (1991). Phenolic assessment of white musts: varietal differences in free-run juices and pressings. Vitis, 30, 189–201.Google Scholar
  185. Somers, T. C., & Ziemelis, G. (1985). Flavonol haze in white wines. Vitis, 24, 43–50.Google Scholar
  186. Souquet, J.-M., Cheynier, V., Brossaud, F., & Moutounet, M. (1996). Polymeric proanthocyanidins from grape skins. Phytochemistry, 43, 509–512.CrossRefGoogle Scholar
  187. Souquet, J.-M., Labarbe, B., Le Guernevé, C., Cheynier, V., & Moutounet, M. (2000). Phenolic composition of grape stems. J. Agric. Food Chem., 48, 1076–1080.CrossRefGoogle Scholar
  188. Souquet, J.-M., Veran, F., Mané, C., & Cheynier, V. (2006). Optimization of extraction conditions on phenolic yields from the different parts of grape clusters – Quantitative distribution of their proanthocyanidins. XXIII International Conference on Polyphenols. Winnipeg, Manitoba, Canada.Google Scholar
  189. Spayd, S., Tarara, J., Mee, D., & Ferguson, J. (2002). Separation of Sunlight and Temperature Effects on the Composition of Vitis vinifera cv. Merlot Berries. Am. J. Enol. Vitic., 53, 171–182.Google Scholar
  190. Stafford, H., & Lester, H. (1984). Flavan-3-ol biosynthesis; the conversion of (+)-dihydroquercetin and flavan-3,4-cis-diol (leucocyanidin) to (+) catechin by reductases extracted from cell suspension cultures of Douglas fir. Plant Physiol., 76, 184–186.CrossRefGoogle Scholar
  191. Su, C., & Singleton, V. (1969). Identification of three flavan-3-ols from grapes. Phytochemistry, 8, 1553–1558.CrossRefGoogle Scholar
  192. Sun, B. S., Pinto, T., M.C. Leandro, Ricardo-Da-Silva, J. M., & Spranger, M. I. (1999). Transfer of catechins and proanthocyanidins from solid parts of the grape cluster into wine. Am. J. Enol. Vitic., 50, 179–184.Google Scholar
  193. Talcott, S., & Lee, J. (2002). Ellagic acid and flavonoid antioxidant content of Muscadine wine and juice. J. Agric. Food Chem., 50, 3186–3192.CrossRefGoogle Scholar
  194. Tesnière, C., Torregrosa, L., Pradal, M., Souquet, J.-M., Gilles, C., Dos Santos, K., Chatelet, P., & Günata, Z. (2006). Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J. Exp. Bot., 57, 91–99.CrossRefGoogle Scholar
  195. Timberlake, C. F., & Bridle, P. (1976). Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic., 27, 97–105.Google Scholar
  196. Trousdale, E., & Singleton, V. L. (1983). Astilbin and engeletin in grapes and wines. Phytochemistry, 22, 619–620.CrossRefGoogle Scholar
  197. Vasserot, Y., Caillet, S., & Maujean, A. (1997). Study of anthocyanin adsorption by yeast lees. AEffect of some physicochemical parameters. Am. J. Enol. Vitic., 48, 433–437.Google Scholar
  198. Vernhet, A., & Moutounet, M. (2002). Fouling of organic microfiltration membranes by wine constituents : importance, relative impact of wine polysaccharides and polyphenols and incidence of membrane properties. J. Membrane Sci., 201, 101–122.CrossRefGoogle Scholar
  199. Vernhet, A., Bellon-Fontaine, M. N., Brillouet, J.-M., Roesink, E., & Moutounet, M. (1997). Wetting properties of microfiltration membrane: determination by means of the capillary rise technique and incidence on the adsorption of wine polysaccharide and tannins. J. Membrane Sci. 128, 163–174.CrossRefGoogle Scholar
  200. Vernhet, Cartalade, D., & Moutounet, M. (2003). Contribution to the understanding of fouling build-up during microfiltration of wines. J. Membr. Sci.e 211, 357–370.CrossRefGoogle Scholar
  201. Vernhet, A., Dupré, K., Boulangé L., Cheynier V., Pellerin P., & Moutounet M. (1999a). Composition of tartrate precipitates deposited on stainless steel tanks during the cold stabilization of wines. Part I : white wines. Am. J. Enol. Vitic., 50, 391–397.Google Scholar
  202. Vernhet, A., Dupré, K., Boulangé L., Cheynier V., Pellerin P., & Moutounet M. (1999b). Composition of tartrate precipitates deposited on stainless steel tanks during the cold stabilization of wines. Part II: red wines. Am. J. Enol. Vitic., 50, 398–403.Google Scholar
  203. Vidal, S., Cartalade, D., Souquet, J., Fulcrand, H., & Cheynier, V. (2002). Changes in proanthocyanidin chain-length in wine-like model solutions. J. Agric Food Chem., 50, 2261–2266.CrossRefGoogle Scholar
  204. Vidal, S., Francis, L., Guyot, S., Marnet, N., Kwiatkowski, M., Gawel, R., Cheynier, V., & Waters, E. J. (2003). The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric., 83, 564–573.CrossRefGoogle Scholar
  205. Waters, E., Pellerin, P., & Brillouet, J. (1994). A Saccharomyces mannoprotein that protects wine from protein haze. Carbohydrate Polymers, 23, 185–191.CrossRefGoogle Scholar
  206. Waters, E. J., Peng, Z., Pocock, K. F., & Williams, P. J. (1995). Proteins in white wine, I: procyanidin occurrence in soluble protein hazes and its relationships to protein instability. Austr. J. Grape Wine Res., I, 86–93.CrossRefGoogle Scholar
  207. Waters, E. J., Shirley, N. J., & Williams, P. J. (1996). Nuisance proteins of wine are grape pathogenesis-related proteins. J. Agric. Food Chem., 44, 3–5.CrossRefGoogle Scholar
  208. Weinges, K., & Muller, O. (1972). Uber die enzymatische oxydative Kupplung der nat rlichen Polyhydroxyflavane. Chemiker Zeitung, 96, 96.Google Scholar
  209. Weinges, K., & Piretti, M. V. (1971). Isolierung des C30H26O12-procyanidins B1 aus Wientrauben. Liebigs Ann. Chem., 748, 218–220.CrossRefGoogle Scholar
  210. Williamson, M. P., Trevitt, C., & Noble, J. M. (1995). NMR studies of dextran oligomer interactions with model polyphenols. Carbohydrate Research, 266, 229–235.CrossRefGoogle Scholar
  211. Wulf, L. W., & Nagel, C. W. (1976). Analysis of phenolic acids and flavonoids by high-pressure liquid chromatography. J. Chromatogr., 116, 271–279.CrossRefGoogle Scholar
  212. Yanagida, A., Kanda, T., Shoji, T., Ohnishi-Kameyama, M., & Nagata, T. (1999). Fractionation of apple procyanidins by size-exclusion chromatography. J. Chromatogr. A., 855, 181–190.CrossRefGoogle Scholar
  213. Yanagida, A., Kanda, T., Takahashi, T., Kamimura, A., Hamazono, T., & Honda, S. (2000). Fractionation of apple procyanidins according to their degree of polymerization by normal-phase high-performance liquid chromatography. J. Chromatogr. A., 890, 251–259.CrossRefGoogle Scholar
  214. Yokotstuka, K. (1990). Effect of press design and pressing pressures on grape juice components. J. Ferment. Bioeng., 70, 15–21.CrossRefGoogle Scholar
  215. Young, D. A., Young, E., Roux, D. G., Brandt, E. V., & Ferreira, D. (1987). Synthesis of condensed tannins. Part 19. Phenol oxidative coupling of (+)-catechin and (+)-mesquitol. Conformation of Bis (+)-catechins. J. Chem. Soc. Perkin Trans. I, 2345–2351.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.INRA UMR Sciences pour l’OenologieFrance

Personalised recommendations