Skip to main content

Yeasts and Wine Flavour

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   213.99
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   263.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   263.74
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, E., Larsson, C., Lidén, G., Niklasson, C., & Gustafsson, L. (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Applied and Environmental Microbiology, 62, 3187–3195.

    CAS  Google Scholar 

  • Albers, E., Lidén, G., Larsson, C., & Gustafsson, L. (1998) Anaerobic redox balance and nitrogen metabolism in Saccharomyces cerevisiae. Recent Research Developments in Microbiology, 2, 253–279.

    CAS  Google Scholar 

  • Albertyn, J., Hohmann, S., Thevelein, J. M., & Prior, B. A. (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Molecular Cell Biology, 14, 4135–4144.

    CAS  Google Scholar 

  • Amerine, M. A., Berg, H. W., Kunkee, R. E., Ough, C. S., Singleton, V. L., & Webb, A. D. (1980) The technology of winemaking, 4th edition. Westport, Connecticut: AVI Publishing Company, Inc.

    Google Scholar 

  • Anderson, R. G., & Kirsop, B. H. (1974) Control of volatile ester synthesis during fermentation of wort of high specific gravity. Journal of the Institute of Brewing, 80, 48–55.

    CAS  Google Scholar 

  • Antonelli, A., Castellari, L., Zambonelli, C., & Carnacini, A. (1999) Yeast influence on volatile composition of wines. Journal of Agricultural and Food Chemistry, 47, 1139–1144.

    CAS  Google Scholar 

  • Aranda, A., & del Olmo, M. (2004) Exposure to acetaldehyde in yeast determines an induction of sulfur amino acid metabolism and polyamine transporter genes, which depends on Met4p and Haa1p transcription factors, respectively. Applied & Environmental Microbiology, 70, 1913–1922.

    CAS  Google Scholar 

  • Áyräpää, T. (1971) Biosynthetic formation of higher alcohols by yeast. Dependence on the nitrogen nutrient level of the medium. Journal of the Institute of Brewing, 77, 266–275.

    Google Scholar 

  • Asenstorfer, R. E., Markides, A. J., Iland, P. G., & Jones, G. P. (2003) Formation of vitisin A during red wine fermentation and maturation. Australian Journal of Grape and Wine Research, 9, 40–46.

    CAS  Google Scholar 

  • Bach, B., Camarasa, C., Rossignol, T., Blondin, B., & Dequin, S. (2004) γ-Aminobutyrate assimilation in Saccharomyces cerevisiae during wine fermentation. Proceedings of Physiology of Yeasts and Filamentous Fungi (PYFF2), Anglet, France. p. 185 (abstract).

    Google Scholar 

  • Backhus, L. E., DeRisi, J., Brown, P. O., & Bisson, L. F. (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Research, 1, 111–125

    CAS  Google Scholar 

  • Bakker, J., & Timberlake, C. F. (1997) Isolation, identification and characterization of new color-stable anthocyanins occurring in some red wines. Journal of Agricultural and Food Chemistry, 45, 35–43.

    CAS  Google Scholar 

  • Bataillon, M., Rico, A., Sablayrolles, J.-M., Salmon, J.-M., & Barre, P. (1996) Early thiamin assimilation by yeasts under enological conditions: impact of alcoholic fermentation kinetics. Journal of Fermentation and Bioengineering, 82, 145–150.

    CAS  Google Scholar 

  • Bardi, L., Crivelli, C., & Marzona, M. (1998) Esterase activity and release of ethyl esters of medium-chain fatty acids by Saccharomyces cerevisiae during anaerobic growth. Canadian Journal of Microbiology, 44, 1171–1176.

    CAS  Google Scholar 

  • Bardi, L., Cocito, C., & Marzona, M. (1999) Saccharomyces cerevisiae cell fatty acid composition and release during fermentation without aeration and in absence of exogenous lipids. International Journal of Food Microbiology, 47, 133–140.

    CAS  Google Scholar 

  • Bartowsky, E. J., Francis, I. L., Bellon, J. R., & Henschke, P. A. (2002) Is buttery aroma perception in wines predictable from diacetyl concentration? Australian Journal of Grape and Wine Research, 8, 180–185.

    Google Scholar 

  • Bartowsky, E. J., Dillon, S. J., Henschke, P. A., Markides, A. J., Dumont, A., Pretorius, I. S., Ortiz-Julien, A., & Herderich, M. (2004) The potential of Saccharomyces cerevisiae wine yeast to improve red wine colour. Australian & New Zealand Grapegrower & Winemaker, 490, 83–85.

    Google Scholar 

  • Becker, J. V., Armstrong, G. O., van der Merwe, M. J., Lambrechts, M. G., Vivier, M. A., & Pretorius, I. S. (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Research, 4, 79–85.

    CAS  Google Scholar 

  • Beh, A. L., Fleet, G. H., Prakitchaiwattana, C., & Heard, G. M. (2006) Evaluation of molecular methods for the analysis of yeasts in foods and beverages. Advances In Experimental Medicine And Biology: Advances In Food Mycology, 571, 69–106.

    CAS  Google Scholar 

  • Bell, S.-J., & Henschke, P. A. (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Australian Journal of Grape and Wine Research, 11, 242–295.

    CAS  Google Scholar 

  • Bellon, J., Rose, L., Currie, B., Ottawa, J., Bell, S., Mclean, H., Rayment, C., Treacher, C., & Henschke, P. (2008) Summary from the winemaking with non-conventional yeasts workshops, 13th AWITC. Australian & New Zealand Grapegrower & Winemaker, 528, 72–77.

    Google Scholar 

  • Beltran, G., Novo, M., Guillamon, J. M., Mas, A., & Rozes, N. (2008) Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. International Journal of Food Microbiology, 121, 169–177.

    CAS  Google Scholar 

  • Belviso, S., Bardi, L., Bartolini, A. B., & Marzona, M. (2004) Lipid nutrition of Saccharomyces cerevisiae in winemaking. Canadian Journal of Microbiology, 50, 669–674.

    CAS  Google Scholar 

  • Bely, M., Rinaldi, A., & Dubourdieu, D. (2003) Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Journal of Bioscience and Bioengineering, 96, 507–512.

    CAS  Google Scholar 

  • Bely, M., Stoeckle, P., Masneuf-Pomarede, I., & Dubourdieu, D. (2008) Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. International Journal of Food Microbiology, 122, 312–320.

    CAS  Google Scholar 

  • Benabdeljalil, C., Cheynier, V., Fulcrand, H., Hakiki, A., Mosdaddak, M., & Moutounet, M. (2000) Evidence of new pigments resulting from reactions between anthocyanins and yeast metabolites. Science des Aliments, 20, 203–220.

    CAS  Google Scholar 

  • Bisson L. F., & Kunkee, R. E. (1993) Microbial interactions during wine production. In: J. G. Zeikus, & E. A. Johnson (Eds.), Mixed Cultures in Biotechnology (pp. 37–68). New York: McGraw-Hill.

    Google Scholar 

  • Bohlscheid, J. C., Fellman, J. K., Wand, X. D., Ansen, D., & Edwards, C. G. (2007) The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentation. Journal of Applied Microbiology, 102, 390–400.

    CAS  Google Scholar 

  • Borneman, A. R., Chambers, P. J., & Pretorius, I. S. (2007) Yeast systems biology: Modelling the winemaker’s art. TRENDS in Biotechnology, 25, 349–355.

    CAS  Google Scholar 

  • Boulton, R. B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (1998) Principles and Practices of Winemaking. USA: Aspen Publishers, Inc.

    Google Scholar 

  • Cabrera, M. J., Moreno, J., Ortega, J. M., Medina, M. (1988) Formation of ethanol, higher alcohols, esters, and terpenes by 5 yeast strains in musts from Pedro Ximenez grapes in various degrees of ripeness. American Journal of Enology and Viticulture, 39, 283–287.

    CAS  Google Scholar 

  • Camarasa, C., Grivet, J., & Dequin, S. (2003) Investigation by 13CNMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology, 149, 2669–2678.

    CAS  Google Scholar 

  • Campo, E., Cacho, J., & Ferreira, V. (2007) Solid phase extraction, multidimensional gas chromatography mass spectrometry determination of four novel aroma powerful ethyl esters. Assessment of their occurrence and importance in wine and other alcoholic beverages. Journal of Chromatography A, 1140, 180–188.

    CAS  Google Scholar 

  • Caridi, A., Cufari, A., & Ramondino, D. (2002) Winemaking from Gaglioppo grapes with hybrid strains of Saccharomyces. Folia Microbiologica, 47, 407–408.

    CAS  Google Scholar 

  • Caridi, A., Cufari, A., Lovino, R., Palumbo, R., & Tedesco, I. (2004) Influence of yeast on polyphenol composition of wine. Food Technology and Biotechnology, 42, 37–40.

    CAS  Google Scholar 

  • Carrau, F. M., Medina, K., Boido, E., Farina, L., Gaggero, C., Dellacassa, E., Versini, G., & Henschke, P. A. (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 243, 107–115.

    CAS  Google Scholar 

  • Carrau, F. M., Medina, K., Farina, L., Boido, E., Henschke, P. A., & Dellacassa, E. (2008) Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Research DOI: 10.1111/j.1567-1364.2008.00412.x.

    Google Scholar 

  • Castellari, L., Ferruzzi, M., Magrini, A., Giudici, P., Passarelli, P., & Zambonelli, C. (1994) Unbalanced wine fermentations by cryotolerant vs. non-cryotolerant Saccharomyces cerevisiae strains. Vitis, 33, 49–52.

    Google Scholar 

  • Castino, M. (1982) Lieviti e polifenoli. Revista Vitic. Enol. 34, 333–348.

    Google Scholar 

  • Chambers, P. J., Bellon, J. R., Schmidt, S. A., Varela, C., & Pretorius, I. S. (2008) Non-genetic engineering approaches for isolating and generating novel yeast for industrial applications. In T. Satyanarayana & G. Kunze (Eds.), Yeasts Biotechnology: Diversity and Applications, Part II Genetic and Molecular Insights (pp. 431–435). Springer.

    Google Scholar 

  • Chambon, C., Ladeveze, V., Oulmouden, A., Servouse, M., & Karst, F. (1990) Isolation and properties of yeast mutants affected in farnesyl diphosphate synthetase. Current Genetics, 18, 41–46.

    CAS  Google Scholar 

  • Charoenchai, C., Fleet, G. H., Henschke, P. A., & Todd, B. E. N. (1997) Screen of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Australian Journal of Grape and Wine Research, 3, 2–8.

    CAS  Google Scholar 

  • Chatonnet, P., Dubourdieu, D., & Boidron, J. N. (1992a) Incidence des conditions de fermentation et d’elevage des vins blanc secs en barriques sur leur composition en substances cedees par le bois de chene. Science des Aliments, 12, 665–685.

    CAS  Google Scholar 

  • Chatonnet, P., Dubourdieu, D., Boidron, J. N., & Pons, M. (1992b) The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture, 60, 165–178.

    CAS  Google Scholar 

  • Chatonnet, P., Dubourdieu, D., Boidron, J., & Lavigne, V. (1993) Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. Journal of the Science of Food and Agriculture, 62, 191–202.

    CAS  Google Scholar 

  • Chen, E. C.-H. (1978) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. Journal of the American Society of Brewing Chemists, 36, 39–43.

    CAS  Google Scholar 

  • Cheraiti, N., Guezenec, S., & Salmon, J. M. (2005) Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions. Applied & Environmental Microbiology, 71, 255–260.

    CAS  Google Scholar 

  • Ciani, M., & Comitini, F. (2006) Influence of temperature and oxygen concentration on the fermentation behaviour of Candida stellata in mixed fermentation with Saccharomyces cerevisiae. World Journal of Microbiology & Biotechnology, 22, 619–623.

    CAS  Google Scholar 

  • Ciani, M., & Maccarelli, F. (1998) Oenological properties of non-Saccharomyces yeasts associated with wine-making. World Journal of Microbiology & Biotechnology, 14, 199–203.

    CAS  Google Scholar 

  • Ciani, M., Beco, L., & Comitini, F. (2006) Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. International Journal of Food Microbiology, 108, 239–245.

    CAS  Google Scholar 

  • Clausen, M., Lamb, C. J., Megnet, R., & Doerner, P. W. (1994) PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae. Gene, 142, 107–112.

    CAS  Google Scholar 

  • Clemente-Jimenez, J. M., Mingorance-Cazorla, L., Martínez-Rodríguez, S., Las Heras-Vázquez, F. J., & Rodríguez-Vico, F. (2004) Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiology, 21, 149–155.

    CAS  Google Scholar 

  • Cordonnier, R., & Bayonove, C. (1974) Mise en évidence dans la baie de raisin, variété Muscat d’Alexandrie, de monoterpènes liés révélables par une ou plusieurs enzymes du fruit. Compte rendus Académie Science Paris, 278, 3387–3390 Série D.

    CAS  Google Scholar 

  • Coulter, A. D., Godden, P. W., & Pretorius, I. S. (2004) Succinic acid – How it is formed, what is its effect on titratable acidity, and what factors influence its concentration in wine? Australian and New Zealand Wine Industry Journal, 19, 16–20, 21–25.

    Google Scholar 

  • Cozzolino, D., Flood, L., Bellon, J., Gishen, M., & De Barros Lopes, M. (2006) Combining near infrared spectroscopy and multivariate analysis as a tool to differentiate different strains of Saccharomyces cerevisiae: a metabolomic study. Yeast, 23, 1089–1096.

    CAS  Google Scholar 

  • Crouzet, J. (1986) Les enzymes et l’arôme des vins. Rev. Fran. Œnol., 102, 42–49.

    Google Scholar 

  • Darriet, P., Boidron, J.-N., & Dubourdieu, D. (1988) Hydrolysis of the terpenic heterosides of small muscat grapes using the periplasmic enzymes of Saccharomyces cerevisiae. Connaissance de la Vigne et du Vin, 22, 189–196.

    Google Scholar 

  • Darriet, P., Tominaga, T., Lavigne, V., Boidron, J., & Dubourdieu, D. (1995) Identification of a powerful aromatic compound of Vitis vinifera L. var. Sauvignon wines: 4-Mercapto-4-methylpentan-2-one. Flavour and Fragrance Journal, 10, 385–392.

    CAS  Google Scholar 

  • de Barros Lopes, M., Eglinton, J., Henschke, P., Høj, P., & Pretorius, I. (2003) The connection between yeast and alcohol reduction in wine: managing the double-edged sword of bottled sunshine. Australian and New Zealand Wine Industry Journal, 18, 17–18, 20, 22.

    Google Scholar 

  • De Mora, S. J., Knowles, S. J., Eschenbruch, R., & Torrey, W. J. (1987) Dimethyl sulphide in some Australian red wines. Vitis, 26, 79–84.

    Google Scholar 

  • Delfini, C., & Costa, A. (1993) Effects of the grape must lees and insoluble materials on the alcoholic fermentation rate and the production of acetic acid, pyruvic acid, and acetaldehyde. American Journal of Enology and Viticulture, 44, 86–92.

    CAS  Google Scholar 

  • Delfini, C., Conterno, L., Giacosa, D., Cocito, C., Ravaglia, S., & Bardi, L. (1992) Influence of clarification and suspended solid contact on the oxygen demand and long-chain fatty acid contents of free run, macerated and pressed grape musts, in relation to acetic acid production. Viticultural and Enological Sciences, 47, 69–75.

    CAS  Google Scholar 

  • Delteil, D., & Jarry, J. M. (1992) Characteristic effects of two commercial yeast strains on Chardonnay wine volatiles and polysaccharide composition. Australian & New Zealand Wine Indsurty Journal, 7, 29–33.

    Google Scholar 

  • Duan, W., Roddick, F. A., Higgins, V. J., & Rogers, P. J. (2004) A parallel analysis of H2S and SO2 formation by brewing yeast in response to sulfur-containing amino acids and ammonium ions. Journal of the American Society of Brewing Chemists, 62, 35–41.

    CAS  Google Scholar 

  • Dubois, P. (1994) Les arômes des vins et leurs défauts. Revue Française d’Oenologie, 145, 27–40.

    CAS  Google Scholar 

  • Dubourdieu, D., Tominaga, T., Masneuf, I., Peyrot des Gachons, C., & Murat, M. L. (2006) The Role of Yeasts in Grape Flavor Development during Fermentation: The Example of Sauvignon blanc. American Journal of Enology and Viticulture, 57, 81–88

    CAS  Google Scholar 

  • Dufour, J.-P. (1989) Effect of wort amino acids on beer quality. Louvain Brewing Letters, 2, 11–19.

    Google Scholar 

  • Dumont, A., & Dulau, L. (1997) The role of yeasts in the formation of wine flavours. In M. Allen, P. Leske, & G. Baldwin (Eds.), Advances in juice clarification and yeast inoculation: proceedings of a seminar; 15 August 1996; Melbourne, Victoria (pp. 14–16). Adelaide S.A: Australian Society of Viticulture and Oenology.

    Google Scholar 

  • Ebeler, S. E., & Spaulding, R. S. (1998) Characterization and measurement of aldehydes in wine. In A. L. Waterhouse & S. E. Ebeler (Eds.), Chemistry of wine flavor (pp. 166–179). Washington, DC: American Chemical Society.

    Google Scholar 

  • Eden, A., Van Nedervelde, L., Drukker, M., Benvenisty, N., & Debourg, A. (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Applied Microbiology and Biotechnology, 55, 296–300.

    CAS  Google Scholar 

  • Edlin, D. A. N., Narbad, A., Dickinson, J. R., & Lloyd, D. (1995) The biotransformation of simple phenolic-compounds by Brettanomyces anomalus. FEMS Microbiology Letters, 125, 311–315.

    CAS  Google Scholar 

  • Edwards, C., & Bohlscheid, J. C. (2007) Impact of pantothenic acid addition on H2S production by Saccharomyces cerevisiae under fermentative conditions. Enzyme & Microbial Technology, 41, 1–4.

    CAS  Google Scholar 

  • Edwards, C. G., Beelman, R. B., Bartley, C. E., & Mcconnell, A. L. (1990) Production of decanoic acid and other volatile compounds and the growth of yeast and malolactic bacteria during vinification. American Journal of Enology and Viticulture, 41, 48–56.

    CAS  Google Scholar 

  • Egli, C. M., Edinger, W. D., Mitrakul, C. M., & Henick-Kling, T. (1998) Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and Chardonnay wines. Journal of Applied Microbiology, 85, 779–789.

    CAS  Google Scholar 

  • Eglinton, J. M., & Henschke, P. A. (1993) Can the addition of vitamins during fermentation be justified? Australian Grapegrower & Winemaker, 352, 47–49, 51–52.

    Google Scholar 

  • Eglinton, J. M., & Henschke, P. A. (1999) The occurrence of volatile acidity in Australian wines. Australian Grapegrower & Winemaker, 426a, 7–12.

    Google Scholar 

  • Eglinton, J. M., McWilliam, S. J., Fogarty, M. W., Francis, I. L., Kwiatkowski, M. J., Høj, P. B., & Henschke, P. A. (2000) The effect of Saccharomyces bayanus-mediated fermentation on the chemical composition and aroma profile of Chardonnay wine. Australian Journal of Grape and Wine Research, 6, 190–196.

    CAS  Google Scholar 

  • Eglinton, J. M., Heinrich, A. J., Pollnitz, A. P., Langridge, P., Henschke, P. A., & de Barros Lopes, M. (2002) Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene. Yeast, 19, 295–301.

    CAS  Google Scholar 

  • Eglinton, J. M., Francis, I. L., & Henschke, P. A. (2005) Selection and potential of Australian Saccharomyces bayanus yeast for increasing the diversity of red and white wine sensory properties. Yeast’s contribution to the sensory profile of wine: maintaining typicity and biodiversity in the context of globalization: proceedings of Les XVIIes Entretiens Scientifiques Lallemand; 27–28 April 2005, La Rioja. (pp. 5–12) Blagnac Cedex, France: Lallemand.

    Google Scholar 

  • Enomoto, K., Arikawa, Y., & Muratsubaki, H. (2002) Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae. FEMS Microbiology Letters, 215, 103–108.

    CAS  Google Scholar 

  • Eriksson, P., Andre, L., Ansell, R., Blomberg, A., & Adler, L. (1995) Cloning and characterization of GPD2, a 2nd gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD(+)) in Saccharomyces cerevisiae, and its comparison with GPD1. Molecular Microbiology, 17, 95–107.

    Google Scholar 

  • Erten, H., & Campbell, L. (2001) The production of low-alcohol wines by aerobic yeasts. Journal of the Institute of Brewing, 107, 207–215.

    CAS  Google Scholar 

  • Eschenbruch, R. (1974) sulfite and sulfide formation during winemaking – A review American Journal of Enology and Viticulture, 25, 157–161.

    Google Scholar 

  • Eschenbruch, R., & Bonish, P. (1976) Production of sulfite and sulfide by low- and high-sulfite forming wine yeasts. Archives in Microbiology, 107, 299–362.

    CAS  Google Scholar 

  • Escot, S., Feuillat, M., Dulau, L., & Charpentier, C. (2001) Release of polysaccharides by yeasts and the influence of released polysaccharides on colour stability and wine astringency. Australian Journal of Grape and Wine Research, 7, 153–159.

    Google Scholar 

  • Escudero, A., Campo, E., Fariña, L., Cacho, J., & Ferreira, V. (2007) Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. Journal of Agricultural and Food Chemistry, 55, 4501–4510.

    CAS  Google Scholar 

  • Estévez, P., Gil, M. L., & Falque, E. (2004) Effects of seven yeast strains on the volatile composition of Palomino wines. International Journal of Food Science and Technology, 39, 61–69.

    Google Scholar 

  • Favale, S., Pietromarchi, P., & Ciolfi, G. (2007) Metabolic activity and interactions between two strains, Saccharomyces cerevisiae r.f. bayanus (SBC2) and Saccharomyces cerevisiae r.f.uvarum (S6u), in pure and mixed culture fermentations. Vitis, 46, 39–43.

    CAS  Google Scholar 

  • Fedrizzi, B., Magno, F., Badocco, D., Nicolini, G., & Versini, G. (2007) Aging effects and grape variety dependence on the content of sulfur volatiles in wine. Journal of Agricultural and Food Chemistry, 55, 10880–10887.

    CAS  Google Scholar 

  • Fernandez-Espinar, M. T., Lopez, V., Ramon, D., Bartra, E., & Querol, A. (2001) Study of the authenticity of commercial wine yeast strains by molecular techniques. International Journal of Food Microbiology, 70, 1–10.

    CAS  Google Scholar 

  • Ferrarini, R., Buiani, M., & Bocca, E. (2008) Membrane processing across the vinification chain. In M. Allen, W. Cameron, R. Johnstone, & P. Pattison (Eds.), Proceedings of ASVO seminar – Towards best practice through innovation in winery processing (pp. 21–26). Adelaide, South Australia: Australian Society of Viticulture and Oenology.

    Google Scholar 

  • Ferreira, V., Lopez, R., & Cacho, J. F. (2000) Quantitative determination of the odorants of young red wines from different grape varieties Journal of the Science of Food and Agriculture, 80, 1659–1667.

    CAS  Google Scholar 

  • Ferreira, V., Jarauta, I., Ortega, L., & Cacho, J. (2004) Simple strategy for the optimization of solid-phase extraction procedures through the use of solid–liquid distribution coefficients: Application to the determination of aliphatic lactones in wine. Journal of Chromatography A, 1025, 147–156.

    CAS  Google Scholar 

  • Ferreira, V., Escudero, A., Campo, E., & Cacho, J. (2008) The chemical foundations of wine aroma – a role game aiming at wine quality, personality and varietal expression. In R. J. Blair, P. J. Williams, & I. S. Pretorius (Eds.), Proceedings of the thirteenth Australian Wine Industry Technical Conference, Adelaide, South Australia, 28 July – 2 August 2007 (pp. 142–150) Adelaide, South Australia: Australian Wine Industry Technical Conference Inc.

    Google Scholar 

  • Feuillat, M., Charpentier, C., & Massoutier, C. (1997) Intérêt œnological des souches de levures Saccharomyces cryotolérantes. Revue des Œnologues, 85, 18–21.

    Google Scholar 

  • Fleet, G. H. (2003) Yeast interactions and wine flavour. International Journal of Food Microbiology, 86, 11–22.

    CAS  Google Scholar 

  • Fleet, G. H., & Heard, G. M. (1993) Yeasts – Growth during fermentation. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 27–54). Chur, Switzerland: Harwood Academic Publishers.

    Google Scholar 

  • Fleet, G. H., Prakitchaiwattana, C., Beh, A. L., & Heard, G. (2002) The yeast ecology of wine grapes. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeast (pp. 1–17). Kerala, India: Research Signpost.

    Google Scholar 

  • Flikweert, M. T., Vander Zanden, L., Janssen, W. M. T. M., Steensma, H. Y., van Dijken, J. P., & Pronk, J. T. (1996) Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast, 12, 247–257.

    CAS  Google Scholar 

  • Fowles, G. W. A. (1992) Acids in grapes and wine: A review. Journal of Wine Research, 3, 25–41.

    Google Scholar 

  • Francis, I. L., & Newton, J. L. (2005) Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11, 114–126.

    CAS  Google Scholar 

  • Francis, I. L., Kassara, S., Noble, A. C., & Williams, P. J. (1999) The contribution of glycoside precursors to Cabernet Sauvignon and Merlot aroma: sensory and compositional studies. In A. L. Waterhouse & S. E Ebeler (Eds.), Chemistry of wine flavour (pp. 13–30). Washington, DC: American Chemical Society.

    Google Scholar 

  • Frivik, S. K., & Ebeler, S. E. (2003) Influence of sulfur dioxide on the formation of aldehydes in white wine. American Journal of Enology and Viticulture, 54, 31–38.

    CAS  Google Scholar 

  • Fugelsang, K. C., & Zoecklein, B. W. (2003) Population dynamics and effects of Brettanomyces bruxellensis strains on Pinot noir (Vitis vinifera L.) wines. American Journal of Enology and Viticulture, 54, 294–300.

    CAS  Google Scholar 

  • Fujii, T., Nagasawa, N., Iwamatsu, A., Bogaki, T., Tamai, W., & Hamachi, M. (1994) Molecular-cloning, sequence-analysis, and expression of the yeast alcohol acetyltransferase gene. Applied and Environmental Microbiology, 60, 2786–2792.

    CAS  Google Scholar 

  • Fujii, T., Kobayashi, O., Yoshimoto, H., Furukawa, S., & Tamai, Y. (1997) Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Applied and Environmental Microbiology, 63, 910–915.

    CAS  Google Scholar 

  • Fukuda, K., Yamamoto, N., Kiyokawa, Y., Yanagiuchi, T., Wakai, Y., Kitamoto, K., Inoue, Y., & Kimura, A. (1998) Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Applied and Environmental Microbiology, 64, 4076–4078.

    CAS  Google Scholar 

  • Fulcrand, H., Benabdeljalil, C., Rigaud, J., Cheynier, V., & Moutounet, M. (1998) A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry, 47, 1401–1407.

    CAS  Google Scholar 

  • Garde-Cerdán, T., & Ancín-Azpilicueta, C. (2006) Contribution of wild yeasts to the formation of volatile compounds in inoculated wine fermentations. European Food Research and Technology, 222, 15–25.

    Google Scholar 

  • Garde-Cerdán, T., & Ancín-Azpilicueta, C. (2008) Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT-Food Science and Technology, 41, 501–510.

    Google Scholar 

  • Gawel, R., Francis, L., & Waters, E. J. (2007a) Statistical correlations between the in-mouth textural characteristics and the chemical composition of Shiraz wines. Journal of Agricultural and Food Chemistry, 55, 2683–2687.

    CAS  Google Scholar 

  • Gawel, R., Van Sluyter, S., & Waters, E. J. (2007b) The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Australian Journal of Grape and Wine Research, 13, 38–45.

    CAS  Google Scholar 

  • Gil, J. V., Mateo, J. J., Jimenez, M., Pastor, A., & Huerta, T. (1996) Aroma compounds in wine as influenced by apiculate yeasts. Journal of Food Science, 61, 1247–1249.

    CAS  Google Scholar 

  • Gil, J. V., Manzanares, P., Genoves, S., Valles, S., & Gonzalez-Candelas, L. (2005) Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. International Journal of Food Microbiology, 103, 57–68.

    CAS  Google Scholar 

  • Giudici, P., & Zambonelli, C. (1992) Biometric and genetic-study on acetic acid production for breeding of wine yeast. American Journal of Enology and Viticulture, 43, 370–374.

    CAS  Google Scholar 

  • Giudici, P., Zambonelli, C., & Kunkee, R. E. (1993) Increased production of n-propanol in wine by yeast strains having an impaired ability to form hydrogen-sulfide. American Journal of Enology and Viticulture, 44, 17–21.

    Google Scholar 

  • Giudici, P., Zambonelli, C., Passarelli, P., & Castellari, L. (1995) Improvement of wine composition with cryotolerant Saccharomyces strains. American Journal of Enology and Viticulture, 46, 143–147.

    CAS  Google Scholar 

  • Godden, P., & Gishen, M. (2005) Trends in the composition of Australian wine. Australian & New Zealand Wine Industry Journal, 20(5), 21–46.

    Google Scholar 

  • Goldfarb, A. (1994) Wild or natural, native yeasts have a role in modern winemaking. Wine and Vines, 75, 27–30.

    Google Scholar 

  • González, S. S., Gallo, L., Climent, M. D., Barrio, E., & Querol, A. (2007) Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. International Journal of Food Microbiology, 116, 11–18.

    Google Scholar 

  • Gramatica, P., Manitto, P., Ranzi, B. M., Delbianco, A., & Francavilla, M. (1982) Stereospecific reduction of geraniol to (R)-(+)-citronellol by Saccharomyces cerevisiae. Experientia, 38, 775–776.

    CAS  Google Scholar 

  • Grando, M. S., Versini, G., Nicolini, G., & Mattivi, F. (1993) Selective use of wine yeast strains having different volatile phenols production. Vitis, 32, 43–50.

    CAS  Google Scholar 

  • Grbin, P. R., & Henschke, P. A. (2000) Mousy off-flavour production in grape juice and wine by Dekkera and Brettanomyces yeasts. Australian Journal of Grape and Wine Research, 6, 255–262.

    CAS  Google Scholar 

  • Grosser, T. (2008) Membrane technology for moderation of alcohol content. In M. Allen, W. Cameron, R. Johnstone, & P. Pattison (Eds.), Proceedings of ASVO seminar – Towards best practice through innovation in winery processing (pp. 33–34). Adelaide, South Australia: Australian Society of Viticulture and Oenology.

    Google Scholar 

  • Grossmann, M., Linsenmeyer, H., Muno, H., & Rapp, A. (1996) Use of oligo-strain yeast cultures to increase complexity of wine aroma. Viticultural and Enological Science, 51, 175–179.

    CAS  Google Scholar 

  • Guitart, A., Hernández-Orte, P., Ferreira, V., Pena, C., & Cacho, J. (1999) Some observations about the correlation between the amino acid content of musts and wines of the Chardonnay variety and their fermentation aromas. American Journal of Enology and Viticulture, 50, 253–258.

    CAS  Google Scholar 

  • Guth, H. (1997) Quantitation and sensory studies of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 45, 3027–3032.

    CAS  Google Scholar 

  • Hallinan, C. P., Saul, D. J., & Jiranek, V. (1999) Differential utilisation of sulfur compounds for H2S liberation by nitrogen-starved wine yeasts. Australian Journal of Grape and Wine Research, 5, 82–90.

    CAS  Google Scholar 

  • Hayasaka, Y., Birse, M., Eglinton, J., & Herderich, M. (2007) The effect of Saccharomyces cerevisiae and Saccharomyces bayanus yeast on colour properties and pigment profiles of a Cabernet Sauvignon red wine. Australian Journal of Grape and Wine Research, 13, 176–185.

    CAS  Google Scholar 

  • Hazelwood, L. A., Daran, J.-M., van Maris, A. J. A., Pronk, J. T., & Dickinson, J. R. (2008) The Ehrlich pathway 1 for fusel alcohol production: a century of research on yeast metabolism Applied and Environmental Microbiology doi:10.1128/AEM.02625-07.

    Google Scholar 

  • Heard, G. (1999) Novel yeasts in winemaking – looking to the future. Food Australia, 51, 347–352.

    Google Scholar 

  • Henschke, P. A. (1997) Wine yeast. In F. K. Zimmermann & K.-D. Entian (Eds.), Yeast sugar metabolism: biochemistry, genetics, biotechnology, and applications (pp. 527–560). Lancaster, PA: Technomic.

    Google Scholar 

  • Henick-Kling, T., Edinger, W., Daniel, P., & Monk, P. (1998) Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. Journal of Applied Microbiology, 84, 865–876.

    CAS  Google Scholar 

  • Henschke, P. A. (2007) Yeast strains available for winemaking 2007/2008. Technical Review (The Australian Wine Research Institute), 171, 9–29.

    Google Scholar 

  • Henschke, P. A., & Dixon, G. (1990) Effect of yeast strain on acetic acid accumulation during fermentation of Botrytis affected grape juice. In P. J. Williams, D. M. Davidson, T. H. Lee, (Eds.), Proceedings of the seventh Australian wine industry technical conference; 13-17 August 1989; Adelaide, SA. (pp. 242-244) Adelaide, SA: Australian Industrial Publishers.

    Google Scholar 

  • Henschke, P. A., & Jiranek, V. (1991) Hydrogen sulfide formation during fermentation: Effect of nitrogen composition in model grape must. In J. Rantz (Ed.), Proceedings of the International Symposium on Nitrogen in Grapes and Wine, Seattle, USA (pp. 172–184). Davis, CA: American Society for Enology and Viticulture.

    Google Scholar 

  • Henschke, P. A., & Jiranek, V. (1993) Yeasts – metabolism of nitrogen compounds. In G. H. Fleet (Ed.) Wine microbiology and biotechnology (pp. 77–164). Chur, Switzerland: Harwood Academic Publishers.

    Google Scholar 

  • Henschke, P. A., & Rose, A. H. (1991) Plasma membranes. In A. H. Rose & J. S. Harrison (Eds.), The Yeasts. Volume 4. Yeast organelles. 2nd ed. (pp. 297–345). London: Academic Press.

    Google Scholar 

  • Henschke, P. A., Eglinton, J. M., Costello, P. J., Francis, I. L., Gockowiak, H., Soden, A., & Høj, P. B. (2002) Winemaking with selected strains of non-Saccharomyces cerevisiae yeasts. Influence of Candida stellata and Saccharomyces bayanus on Chardonnay wine composition and flavour. In H. Trogus, J. Gafner, & A. Sütterlin (Eds.), Proceedings of the 13th International Oenology Symposium; 9–12 June 2002; Montpellier, France: (pp. 459–481). Kaiserstuhl, Breisach, Germany: International Association of Oenology, Management and WineMarketing.

    Google Scholar 

  • Hernández-Orte, P., Cacho, J. F., & Ferreira, V. (2002) Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. Journal of Agricultural and Food Chemistry, 50, 2891–2899.

    Google Scholar 

  • Hernández-Orte, P., Ibarz, M. J., Cacho, J., & Ferreira, V. (2005) Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chemistry, 89, 163–174.

    Google Scholar 

  • Hernández-Orte, P., Bely, M., Cacho, J., & Ferreira, V. (2006) Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Australian Journal of Grape and Wine Research, 12, 150–160.

    Google Scholar 

  • Hernández-Orte, P., Cersosimo, M., Loscos, N., Cacho, J., Garcia-Moruno, E., & Ferreira, V. (2008) The development of varietal aroma from non-floral grapes by yeasts of different genera. Food Chemistry, 107, 1064–1077.

    Google Scholar 

  • Herraiz, T., Reglero, G., Herraiz, M., Martinalvarez, P. J., & Cabezudo, M. D. (1990) The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur-dioxide. American Journal of Enology and Viticulture, 41, 313–318.

    CAS  Google Scholar 

  • Holgate, A. (1997) The influence of yeast strain on the acid balance of red wine. In: M. Allen, P. Leske, & G. Bladwin (Eds.), Proceedings Advances in juice clarification and yeast inoculation, Melbourne, Australia. (pp. 39–41). Adelaide, SA: Australian Society of Viticulture and Oenology.

    Google Scholar 

  • Holloway, P., Vantwest, R. A., Subden, R. E., & Lachance, M. A. (1992) A strain of Candida stellata of special interest to oenologists. Food Research International, 25, 147–149.

    Google Scholar 

  • Houtman, A. C., & Du Plessis, C. S. (1981) The effect of juice clarity and several conditions promoting yeast growth on fermentation rate, the production of aroma components and wine quality. South African Journal of Enology and Viticulture, 2, 71–81.

    CAS  Google Scholar 

  • Houtman, A. C., & Du Plessis, C. S. (1986) The effect of grape cultivar and yeast strain on fermentation rate and concentration of volatile components in wine. South African Journal of Enology and Viticulture, 7, 14–20.

    CAS  Google Scholar 

  • Houtman, A. C., Morais, J., & Du Plessis, C. S. (1980) Factors affecting the reproducibility of fermentation of grape juice and of the aroma composition of wines. I Grape maturity, sugar, inoculation concentration, aeration, juice turbidity and ergosterol. Vitis, 19, 37–54.

    CAS  Google Scholar 

  • Howell, K. S., Bartowsky, E. J., Fleet, G. H., & Henschke, P. A. (2004a) Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation. Letters in Applied Microbiology, 38, 315–320.

    CAS  Google Scholar 

  • Howell, K. S., Swiegers, J. H., Elsey, G. M., Siebert, T. E., Bartowsky, E. J., Fleet, G. H., Pretorius, I. S., & de Barros Lopes, M. A. (2004b) Variation in 4-mercapto-4-methyl-pentan-2-one release by Saccharomyces cerevisiae commercial wine strains. FEMS Microbiology Letters, 240, 125–129.

    CAS  Google Scholar 

  • Howell, K. S., Klein, M., Swiegers, J. H., Hayasaka, Y., Elsey, G. M., Fleet, G. H., Høj, P. B., Pretorius, I. S., & de Barros Lopes, M. A. (2005) Genetic determinants of volatile-thiol release by Saccharomyces cerevisiae during wine fermentation. Applied and Environmental Microbiology, 71, 5420–5426.

    CAS  Google Scholar 

  • Howell, K. S., Cozzolino, D., Bartowsky, E. J., Fleet, G. H., & Henschke, P. A. (2006) Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation. FEMS Yeast Research, 6, 91–101.

    CAS  Google Scholar 

  • Jackson, R.S. (2000) Wine Science. Principles and Applications (London, UK: Academic Press).

    Google Scholar 

  • Jane, T. M., Gawel, R., & Henschke, P. A., (1996) Yeast strain can affect the flavour of Chardonnay wine. In C. S. Stockley, A. N. Sas, R. S. Johnstone, & T. H. Lee (Eds.), Proceedings of the ninth Australian wine industry technical conference (p. 223). Adelaide SA: Winetitles.

    Google Scholar 

  • Jemec, K. P., & Raspor, P. (2005) Initial Saccharomyces cerevisiae concentration in single or composite cultures dictates bioprocess kinetics. Food Microbiology, 22, 293–300.

    Google Scholar 

  • Jiranek, V., Langridge, P., & Henschke, P. A. (1995a) Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Applied and Environmental Microbiology, 61, 461–467.

    CAS  Google Scholar 

  • Jiranek, V., Langridge, P., & Henschke, P. A. (1995b) Validation of bismuth-containing indicator media for predicting H2S producing potential of Saccharomyces cerevisiae wine yeasts under enological conditions. American Journal of Enology and Viticulture, 46, 269–273.

    CAS  Google Scholar 

  • Jiranek, V., Langridge, P., & Henschke, P. A. (1996) Determination of sulphite reductase activity and its response to assimilable nitrogen status in a commercial Saccharomyces cerevisiae wine yeast. Journal of Applied Bacteriology, 81, 329–336.

    CAS  Google Scholar 

  • Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2003) The effect of non-Saccharomyces yeasts on fermentation and wine quality. South African Journal of Enology and Viticulture, 24, 55–62.

    CAS  Google Scholar 

  • Jolly, N., Augustyn, O., & Pretorius I. S. (2006) The role and use of non-Saccharomyces yeasts in wine production. South African Journal of Enology and Viticulture, 27, 15–39.

    CAS  Google Scholar 

  • Kapsopoulou, K., Mourtzini, A., Anthoulas, M., & Nerantzis, E. (2007) Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae. World Journal of Microbiology & Biotechnology, 23, 735–739.

    CAS  Google Scholar 

  • Kaur, J., & Bachhawat, A. K. (2007) Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae. Genetics, 176, 877–890.

    CAS  Google Scholar 

  • Kennedy, J. A., Saucier, C., & Glories, Y. (2006) Grape and wine phenolics: History and perspective. American Journal of Enology and Viticulture, 57, 239–248.

    CAS  Google Scholar 

  • Killian, E., & Ough, C. S. (1979) Fermentation esters – formation and retention as affected by fermentation temperature. American Journal of Enology and Viticulture, 30, 301–305.

    CAS  Google Scholar 

  • Kim, D.-H., Hong, Y.-A., & Park, H.-D. (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnology Letters, DOI 10.1007/s10529-008-9726-1.

    Google Scholar 

  • Klingshirn, L. M., Liu, J. R., & Gallander, J. F. (1987) Higher alcohol formation in wines as related to the particle size profiles of juice insoluble solids. American Journal of Enology and Viticulture, 38, 207–210.

    CAS  Google Scholar 

  • Kunkee, R. E., & Vilas, M. R. (1994) Toward an understanding of the relationship between yeast strain and flavour production during vinifications: flavor effects in vinifications of a nondistinct variety of grapes by several strains of wine yeast. Wein-Wissenschaft, 49, 46–50.

    CAS  Google Scholar 

  • Kurtzman, C. P., & Fell, J. W. (1998) The yeasts: A taxonomic study. Amsterdam: Elservier.

    Google Scholar 

  • Lafon-Lafourcade, S., Lucmaret, V., Joyeux, A., & Ribéreau-Gayon, P. (1981) Utilisation de levains mixtes dans l’élaboration des vins de pourriture noble, en vue de r裵ire l’acidité volatile. Compte Rendu de l’Acad謩e d’Agriculture de France, 67, 616–622.

    CAS  Google Scholar 

  • Lambrechts, M. G., & Pretorius, I. S. (2000) Yeast and its importance to wine aroma – A review. South African Journal of Enology and Viticulture, 21, 97–129.

    CAS  Google Scholar 

  • Lavigne, V., Pons, A., Darriet, P., & Dubourdieu, D. (2008) Changes in the sotolon content of dry white wines during barrel and bottle aging. Journal of Agricultural and Food Chemistry, 56, 2688–2693.

    CAS  Google Scholar 

  • Le Jeune, C., Lollier, M., Demuyter, C., Erny, C., Legras, J. L., Aigle, M., & Masneuf-Pomarede, I. (2007) Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. FEMS Yeast Research, 7, 540–549.

    CAS  Google Scholar 

  • Lilly, M., Lambrechts, M. G., & Pretorius, I. S. (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Applied and Environmental Microbiology, 66, 744–753.

    CAS  Google Scholar 

  • Lilly, M., Bauer, F. F., Lambrechts, M. G., Swiegers, J. H., Cozzolino, D., & Pretorius, I. S. (2006a) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast, 23, 641–659.

    CAS  Google Scholar 

  • Lilly, M., Bauer, F. F., Styger, G., Lambrechts, M. G., & Pretorius, I. S. (2006b) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Research, 6, 726–743.

    CAS  Google Scholar 

  • Linderholm, A. L., Olineka, T. L., Hong, Y., & Bisson, L. F. (2006) Allele diversity among genes of the sulfate reduction pathway in wne srains of Saccharomyces cerevisiae. American Journal of Enology and Viticulture, 57, 431–440

    CAS  Google Scholar 

  • Linderholm, A. L., Findleton, C. L., Kumar, G., Hong, Y., & Bisson, L. F. (2008) Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Applied Environmental Microbiology, 74, 1418–1427.

    Google Scholar 

  • Lopandic, K., Gangl, H., Wallner, E., Tscheik, G., Leitner, G., Querol, A., Borth, N., Breitenbach, M., Prillenger, H., Tiefenbrunner, W. (2007) Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Research, 7, 953–965.

    CAS  Google Scholar 

  • Loscos, N., Hernández-Orte, P., Cacho, J., & Ferreira, V. (2007) Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions. Journal of Agricultural and Food Chemistry, 55, 6674–6684.

    CAS  Google Scholar 

  • Lurton, L., Snakkers, G., Roulland, C., Galy, B., & Versavaud, A. (1995) Influence of the fermentation yeast-strain on the composition of wine spirits. Journal of the Science of Food and Agriculture, 67, 485–491.

    CAS  Google Scholar 

  • Luparia, V., Soubeyrand, V., Berges, T., Julien, A., & Salmon, J. M. (2004) Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations. Applied Microbiology and Biotechnology, 65, 25–32.

    CAS  Google Scholar 

  • Malcorps, P., Cheval, J. M., Jamil, S., & Dufour, J.-P. (1991) A new model for the regulation of ester synthesis by alcohol acetyltransferases in Saccharomyces cerevisiae. Journal of the American Society of Brewing Chemists, 49, 47–53.

    CAS  Google Scholar 

  • Marullo, P., Yvert, G., Bely, M., Aigle, M., & Dubourdieu, D. (2007) Efficient use of DNA molecular markers to construct industrial yeast strains. FEMS Yeast Research, 7, 1295–1306.

    CAS  Google Scholar 

  • Manzanares, P., Rojas, V., Genoves, S., & Valles, S. (2000) A preliminary search for anthocyanin-beta-D-glucosidase activity in non-Saccharomyces wine yeasts. International Journal of Food Science and Technology, 35, 95–103.

    CAS  Google Scholar 

  • Marks, V. D., van der Merwe, G. K., & van Vuuren, H. J. J. (2003) Transcriptional profiling of wine yeast in fermenting grape juice: Regulatory effect of diammonium phosphate. FEMS Yeast Research, 3, 269–287.

    CAS  Google Scholar 

  • Marsal, F., Sarre, Ch., Dubourdieu, D., & Boidron, J.-N. (1988) Role de la levure dans la transformation de certains constituants volatils du bois de chene au cours de l’elaboration en barrique des vins blancs secs. Connaissance de la Vigne et du Vin, 22, 33–38.

    CAS  Google Scholar 

  • Martineau, B., Acree, T. E., & Henick-Kling, T. (1995) Effect of wine type on the detection threshold for diacetyl. Food Research International, 28, 139–143.

    CAS  Google Scholar 

  • Masneuf, I., Murat, M. L., Naumov, G. I., Tominaga, T., & Dubourdieu, D. (2002) Hybrids Saccharomyces cerevisiae xSaccharomyces bayanus var. uvarum having a high liberating ability of some sulfur varietal aromas of Vitis vinifera Sauvignon blanc wines. Journal International Des Sciences de la Vigne et du Vin, 36, 205–212.

    CAS  Google Scholar 

  • Mason, A. B., & Dufour, J. P. (2000) Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast, 16, 1287–1298.

    CAS  Google Scholar 

  • Massoutier, C., Alexandre, H., Feuillat, M., & Charpentier, C. (1998) Isolation and characterization of cryotolerant Saccharomyces strains. Vitis, 37, 55–59.

    Google Scholar 

  • Mateo, J. J., Jimenez, M., Huerta, T., & Pastor, A. (1991) Contribution of different yeasts isolated from musts of monastrell grapes to the aroma of wine. International Journal of Food Microbiology, 14, 153–160.

    CAS  Google Scholar 

  • Mateos, J. A. R., Perez-Nevado, F., & Fernandez, M. R. (2006) Influence of Saccharomyces cerevisiae yeast strain on the major volatile compounds of wine Enzyme and Microbial Technology, 40, 151–157.

    Google Scholar 

  • Mauricio, J. C., Bravo, M., Moreno, J., Medina, M., & Ortega, J. M. (1995) Influence of different fermentation conditions on the production of medium chain fatty acids (C6, C8, C10) and their respectiveethyl esters by Saccharomyces cerevisiae. Acta Horticulturae, 388, 209–214.

    CAS  Google Scholar 

  • Meaden, P. G., Dickinson, F. M., Mifsud, A., Tessier, W., Westwater, J., Bussey, H., & Midgley, M. (1997) The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase. Yeast, 13, 1319–1327.

    CAS  Google Scholar 

  • Medina, K., Boido, E., Dellacassa, E., & Carrau, F. (2005) Yeast interactions with anthocyanins during red wine fermentation. American Journal of Enology and Viticulture, 56, 104–109.

    CAS  Google Scholar 

  • Mehdi, K., & Penninckx, M. J. (1997) An important role for glutathione and gamma-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology-UK, 143, 1885–1889.

    CAS  Google Scholar 

  • Mestres, M., Busto, O., & Guasch, J. (2000) Analysis of organic sulfur compounds in wine aroma. Journal of Chromatography A, 881, 569–581.

    CAS  Google Scholar 

  • Miller, A. C., Wolff, S. R., Bisson, L. F., & Ebeler, S. E. (2007) Yeast strain and nitrogen supplementation: Dynamics of volatile ester production in Chardonnay juice fermentations. American Journal of Enology and Viticulture, 58, 470–483.

    CAS  Google Scholar 

  • Moio, L., Ugliano, M., Genovese, A., Gambuti, A., Pessina, R., & Piombino, P. (2004) Effect of antioxidant protection of must on volatile compounds and aroma shelf life of Falanghina (Vitis vinifera L.) wine. Journal of Agricultural and Food Chemistry, 52, 891–897.

    CAS  Google Scholar 

  • Molina, A. M., Swiegers, J. H., Varela, C., Pretorius, I. S., & Agosin, E. (2007) Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Applied Microbiology and Biotechnology, 77, 675–687.

    CAS  Google Scholar 

  • Monk, P.R. (1986) Formation, utilization, and excretion of hydrogen sulphide by wine yeast. Australian & New Zealand Wine Industry Journal, 1, 11–16.

    Google Scholar 

  • Monk, P. R., & Cowley, P. J. (1984) Effect of nicotinic acid and sugar concentration of grape juice and temperature on accumulation of acetic acid during yeast fermentation. Journal of Fermentation Technology, 62, 515–521.

    CAS  Google Scholar 

  • Morata. A., Gomez-Cordoves, M. C., Suberviola, J., Bartolome, B., Colomo, B., & Suarez, J. A. (2003) Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines. Journal of Agricultural and Food Chemistry, 51, 4084–4088.

    CAS  Google Scholar 

  • Morata, A., Gomez-Cordoves, M. C., Calderon, F., & Suarez, J. A. (2006) Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. International Journal of Food Microbiology, 106, 123–129.

    CAS  Google Scholar 

  • Moreira, N., Mendes, F., Pereira, O., Guedes de Pinho, P., Hogg, T., & Vasconcelos, I. (2002) Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts. Analytica Chimica Acta, 458, 157–167.

    CAS  Google Scholar 

  • Moreno, J. J., Millan, C., Ortega, J. M., & Medina, M. (1991) Analytical differentiation of wine fermentations using pure and mixed yeast cultures. Journal of Industrial Microbiology, 7, 181–189.

    CAS  Google Scholar 

  • Müller-Thurgau, L. (1896) Uber den Ursprung der Weinhefe und Hieran sich knuepfende praktische Folgerungen. Weinbau Weinhandel, 7, 40–41.

    Google Scholar 

  • Murat, M. L., Masneuf, I., Darriet, P., Lavigne, V., Tominaga, T., & Dubourdieu, D. (2001) Effect of Saccharomyces cerevisiae yeast strains on the liberation of volatile thiols in Sauvignon blanc wine. American Journal of Enology and Viticulture, 52, 136–139.

    CAS  Google Scholar 

  • Muratore, G., Asmundo, C. N., Lanza, C. M., Caggia, C., Licciardello, F., & Restuccia, C. (2007) Influence of Saccharomyces uvarum on volatile acidity, aromatic and sensory profile of Malvasia delle Lipari wine. Food Technology and Biotechnology, 45, 101–106.

    CAS  Google Scholar 

  • Naumov, G. I., Masneuf, I., Naumova, E. S., Aigle, M., & Dubourdieu, D. (2000) Association of Saccharomyces bayanus var. uvarum with some French wines: genetic analysis of yeast populations. Research in Microbiology, 151, 683–691.

    CAS  Google Scholar 

  • Navarro-Avino, J. P., Prasad, R., Miralles, V. J., Benito, R. M., & Serrano, R. (1999) A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast, 15, 829–842.

    CAS  Google Scholar 

  • Nguyen, H. V., & Gaillardin, C. (2005) Evolutionary relationships between the former species Saccharomyces uvarum and the hybrids Saccharomyces bayanus and Saccharomyces pastorianus; reinstatement of Saccharomyces uvarum (Beijerinck) as a distinct species. FEMS Yeast Research, 5, 471–483.

    CAS  Google Scholar 

  • Nieuwoudt, H. H. (2004) Glycerol and wine. (Doctoral dissertation, University of Stellenbosch, 2004) p. 115.

    Google Scholar 

  • Nieuwoudt, H. H., Prior, B. A., Pretorius, I. S., & Bauer, F. F. (2002) Glycerol in South African table wines: An assessment of its relationship to wine quality. South African Journal of Enology and Viticulture, 23, 22–30.

    CAS  Google Scholar 

  • Noble, A. C., & Bursick, G. F. (1984) The contribution of glycerol to perceived viscosity and sweetness in white wine. American Journal of Enology and Viticulture, 35, 110–112.

    CAS  Google Scholar 

  • Nordström, K. (1964) Formation of ethyl acetate in fermentation with brewer’s yeast. V. Effect of some vitamins and mineral nutrients. Journal of the Institute of Brewing, 70, 209–221.

    Google Scholar 

  • Orlic, S., Redzepovic, S., Jeromel, A., Herjavec, S., & Iacumin, L. (2007) Influence of indigenous Saccharomyces paradoxus strains on Chardonnay wine fermentation aroma. International Journal of Food Science and Technology, 42, 95–101.

    CAS  Google Scholar 

  • Oshita, K., Kubota, M., Uchida, M., & Ono, M. (1995) Clarification of the relationship between fusel alcohol formation and amino acid assimilation by brewing yeast using 13C-labelled amino acid. Proceedings european brewing convention. Brussels (pp. 387–394). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Palacios, A., Raginel, F., & Ortiz-Julien, A. (2007) Can the selection of Saccharomyces cerevisiae yeast lead to variations in the final alcohol degree of wines? The Australian & New Zealand Grapegrower & Winemaker, (Dec.), 71, 73–75.

    Google Scholar 

  • Paraggio, M., & Fiore, C. (2004) Screening of Saccharomyces cerevisiae wine strains for the production of acetic acid. World Journal of Microbiology & Biotechnology, 20, 743–747.

    CAS  Google Scholar 

  • Park, S. K., Boulton, R. B., Bartra, E., & Noble, A. C. (1994) Incidence of volatile sulfur compounds in California wines. A preliminary survey. American Journal of Enology and Viticulture, 45, 341–344.

    CAS  Google Scholar 

  • Park, S. K., Boulton, R. B., & Noble, A. C. (2000) Formation of hydrogen sulfide and glutathione during fermentation of white grape musts. American Journal of Enology and Viticulture, 51, 91–97.

    CAS  Google Scholar 

  • Perpète, P., Duthoit, O., De Maeyer, S., Imray, L., Lawton, A. I., Stavropoulos, K. E., Gitonga, V. W., Hewlins, M. J. E., & Dickinson, J. R. (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Research, 6, 48–56.

    Google Scholar 

  • Pigeau, G. M., & Inglis, D. L. (2005) Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during Icewine fermentation. Journal of Applied Microbiology, 99, 112–125.

    CAS  Google Scholar 

  • Pigeau, G. M., & Inglis, D. L. (2007) Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation. Journal of Applied Microbiology, 103, 1576–1586.

    CAS  Google Scholar 

  • Piombino, P., Pessina, R., Genovese, A., Le Quere, J.-L. & Moio, L. (2004) Gli odori di frutti di bosco dell’aroma del vino. Parte II: analisi strumentale. L’Enologo, 50, 97–101.

    Google Scholar 

  • Plata, C., Millán, C., Mauricio, J. C., & Ortega, J. M. (2003) Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts Food Microbiology, 20, 217–224.

    CAS  Google Scholar 

  • Plata, C., Mauricio, J.C., Millan, C., & Ortega, J. M. (2005) Influence of glucose and oxygen on the production of ethyl acetate and isoamyl acetate by a Saccharomyces cerevisiae strain during alcoholic fermentation. World Journal of Microbiology & Biotechnology, 21, 115–121.

    CAS  Google Scholar 

  • Pretorius, I. S. (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, 16, 675–729.

    CAS  Google Scholar 

  • Pretorius, I. S., Bartowsky, E. J., de Barros Lopes, M., Bauer, F. F., du Toit, M., van Rensburg, P., & Vivier, M. A. (2006) The tailoring of designer grapevines and microbial starter strains for a market-directed and quality-focused wine industry. In H. Y. Hui, E. Castell-Perez, L. M. Cunha, C. I. Guerrero-Legarreta, H. H. Liang, Y. M. Lo, D. L. Marshall, W. K. Nip, F. Shahidi, F. Sherkat, R. J. Winger, K. L.Yam, (Eds.), Handbook of Food Science, Technology and Engineering; Volume 4. Food Technology and Food Processing. (pp. 174-1–174-24) New York, NY: CRC Press.

    Google Scholar 

  • Pretorius, I. S., & Bauer, F. F. (2002) Meeting the consumer challenge through genetically customized wine-yeast strains. Trends in Biotechnology, 20, 426–432.

    CAS  Google Scholar 

  • Radler, F. (1993) Yeasts – metabolism of organic acids. In G. H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 165–182). Singapore: Harwood Academic Publishers.

    Google Scholar 

  • Radler, F., & Schütz, H. (1982) Glycerol production of various strains of Saccharomyces. American Journal of Enology and Viticulture, 33, 36–40.

    CAS  Google Scholar 

  • Rainieri, S., Zambonelli, C., Tini, V., Castellari, L., & Giudici, P. (1998) The enological traits of thermotolerant Saccharomyces strains. American Journal of Enology and Viticulture, 49, 319–324.

    CAS  Google Scholar 

  • Ramey, D. (1996) Low input winemaking—let nature do the work. In C. S. Stockley, A. N., Sas, R. S. Johnstone, & T. H. Lee, (Eds.) Proceedings of the Ninth Australian Wine Industry Technical Conference; 16–19 July 1995; Adelaide, South Australia (pp. 26–29). Adelaide, South Australia: Winetitles.

    Google Scholar 

  • Rankine, B. C. (1953) Quantitative differences in products of fermentation by different strains of wine yeasts. Australian Journal of Applied Science, 4, 590–602.

    CAS  Google Scholar 

  • Rankine, B. C. (1963) Nature, origin and prevention of hydrogen sulphide aroma in wines. Journal of the Science of Food and Agriculture, 14, 79–91.

    CAS  Google Scholar 

  • Rankine, B. C. (1966) Decomposition of L-malic acid by wine yeasts. Journal of the Science of Food and Agriculture, 17, 312–316.

    CAS  Google Scholar 

  • Rankine, B. C. (1968) The importance of yeasts in determining the composition and quality of wines. Vitis, 7, 22–49.

    CAS  Google Scholar 

  • Rankine, B., & Bridson, D. (1971) Glycerol in Australian wines and factors influencing its formation. American Journal of Enology and Viticulture, 23, 6–12.

    Google Scholar 

  • Rankine, B. C. (1977) Modern developments in selection and use of pure yeast cultures for winemaking. Australian Wine, Brewing and Spirit Review 96(8), 31–33 and 96(9), 32–34.

    Google Scholar 

  • Rapp, A., & Marais, J. (1993) The shelf life of wine: changes in aroma substances during storage and aging of white wines. In G. Charalambous (Ed.), The Shelf Life of Foods and Beverages. Chemical, Biological, Physical and Nutritional Aspects (pp. 891–921). Amsterdam, The Netherlands: Elsevier Science Publisher.

    Google Scholar 

  • Rapp, A., & Versini, G. (1996) Influence of nitrogen on compounds in grapes on aroma compounds in wines. Journal International des Sciences de la Vigne et du Vin, 51, 193–203.

    CAS  Google Scholar 

  • Rauhut, D. (1993) Yeasts – Production of sulfur compounds. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 183–223). Chur, Switzerland: Harwood Academic Publishers.

    Google Scholar 

  • Rauhut, D., & Kürbel, H. (1994) The production of H2S from elemental sulfur residues during fermentation and its influence on the formation of sulfur metabolites causing off-flavours in wine. Viticultural and Enological Science, 49, 27–36.

    CAS  Google Scholar 

  • Rauhut, D., Kürbel, H., Dittrich, H. H, & Grossmann, M. (1996) Properties and differences of commercial yeast strains with respect to their formation of sulfur compounds. Viticultural and Enological Science, 51, 187–192.

    CAS  Google Scholar 

  • Rauhut, D., Kürbel, H., MacNamara, K., & Grossmann, M. (1998) Headspace GC-SCD monitoring of low volatile sulfur compounds during fermentation and in wine. Analusis, 26, 142–145.

    CAS  Google Scholar 

  • Redzepovic, S., Orlic, S., Sikora, S., Majdak, A., & Pretorius, I. S. (2002) Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Letters in Applied Microbiology, 35, 305–310.

    CAS  Google Scholar 

  • Redzepovic, S., Orlic, S., Majdak, A., Kozina, B., Volschenk, H., Viljoen-Bloom, M. (2003) Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. International Journal of Food Microbiology, 83, 49–61.

    CAS  Google Scholar 

  • Regenberg, B., During-Olsen, L., Kielland-Brandt, M. C., & Holmberg, S. (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Current Genetics, 36, 317–328.

    CAS  Google Scholar 

  • Remize, F., Roustan, J. L., Sablayrolles, J. M., Barre, P., & Dequin, S. (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in byproduct formation and to a stimulation of fermentation rate in stationary phase. Journal of Applied and Environmental Microbiology, 65, 143–149.

    CAS  Google Scholar 

  • Remize, F., Andrieu, E., & Dequin, S. (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: Role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Applied and Environmental Microbiology, 66, 3151–3159.

    CAS  Google Scholar 

  • Reynolds, A. G., Edwards, C. G., Cliff, M. A., Thorngate, J. H., & Marr, J. C. (2001) Evaluation of yeast strains during fermentation of Riesling and Chenin blanc musts. American Journal of Enology and Viticulture, 52, 336–344.

    Google Scholar 

  • Reynolds, A. G., Schlosser, J., Power, R., Roberts, R., Willwerth, J., & de Savigny, C. (2007) Magnitude and interaction of viticultural and enological effects. I. Impact of canopy management and yeast strain on sensory and chemical composition of Chardonnay Musque. American Journal of Enology and Viticulture, 58, 12–24.

    CAS  Google Scholar 

  • Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B., & Lonvaud, A. (2000a) Handbook of Enology, Volume 1. The microbiology of wines and vinification. (p. 497) Chichester, UK: John Wiley & Sons Ltd.

    Google Scholar 

  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000b) Handbook of Enology, Volume 2. The chemistry of wine stabilisation and treatments. (p. 441) Chichester, UK: John Wiley & Sons Ltd.

    Google Scholar 

  • Rojas, V., Gil, J. V., Pinaga, F., & Manzanares, P. (2001) Studies on acetate ester production by non-Saccharomyces wine yeasts. International Journal of Food Microbiology, 70, 283–289.

    CAS  Google Scholar 

  • Rojas, V., Gil, J. V., Pinaga, F., & Manzanares, P. (2003) Acetate ester formation in wine by mixed cultures in laboratory fermentations. International Journal of Food Microbiology, 86, 181–188.

    CAS  Google Scholar 

  • Romano, P., & Suzzi, G. (1996) origin and production of acetoin during wine yeast fermentation. Applied and Environmental Microbiology, 62, 309–315.

    CAS  Google Scholar 

  • Romano, P., Suzzi, G., Turbanti, L., & Polsinelli, M. (1994) Acetaldehyde production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 118, 213–218.

    CAS  Google Scholar 

  • Romano, P., Caruso, M., Capece, A., Lipani, G., Paraggio, M., & Fiore, C. (2003a) Metabolic diversity of Saccharomyces cerevisiae strains from spontaneously fermented grape musts. World Journal of Microbiology & Biotechnology, 19, 311–315.

    CAS  Google Scholar 

  • Romano P, Fiore C, Paraggio M, Caruso M, & Capece A (2003b) Function of yeast species and strains in wine flavour. International Journal of Food Microbiology, 86, 169–180.

    CAS  Google Scholar 

  • Rosenfeld, E., Beauvoit, B., Blondin, B., & Salmon, J. M. (2003) Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: Effect on fermentation kinetics. Applied and Environmental Microbiology, 69, 113–121.

    CAS  Google Scholar 

  • Ross, J. P. (1997) Going wild: wild yeast in winemaking. Wine and Vines, Sept., 16–21.

    Google Scholar 

  • Rossi, I., & Bertuccioli, M. (1992) Influences of lipid additions on fatty acid composition of Saccharomyces cerevisiae and aroma characteristics of experimental wines. Journal of the Institute of Brewing, 98, 305–314.

    Google Scholar 

  • Saerens, S. M. G., Verstrepen, K. J., Van Laere, S. D. M., Voet, A. R. D., Van Dijck, P., Delvaux, F. R., Thevelein, J. M. (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. Journal of Biological Chemistry, 281, 4446–4456.

    CAS  Google Scholar 

  • Saerens, S. M. G., Delvaux, F., Verstrepen, K. J., Van Dijck, P., Thevelein, J. M., Delvaux, F. R. (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology, 74, 454–461.

    CAS  Google Scholar 

  • Saint-Prix, F., Bonquist, L., & Dequin, S. (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: The NADP(+)-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology, 150, 2209–2220.

    CAS  Google Scholar 

  • Salmon, J. M. (1987) L-malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochimica et Biophysica ACTA, 901, 30–34.

    CAS  Google Scholar 

  • Salmon, J. M., Vezinhet, F., & Barre, P. (1987) Anabolic role of L-malic acid in Saccharomyces cerevisiae in anaerobiosis during alcoholic fermentation. FEMS Microbiology Letters, 42, 213–220.

    CAS  Google Scholar 

  • Schneider, R., Charrier, F., Razungles, A., & Baumes, R. (2006) Evidence for an alternative biogenetic pathway leading to 3-mercaptohexanol and 4-mercapto-4-methylpentan-2-onein wines. Analytica Chimica Acta, 563, 58–64.

    CAS  Google Scholar 

  • Schreier, P. (1979) Flavour composition of wines. CRC Critical Reviews in Food Science and Nutrition, 12, 59–111.

    CAS  Google Scholar 

  • Sefton, M. A. (1998) Hydrolytically-released volatile secondary metabolites from a juice sample of Vitis vinifera grape cvs Merlot and Cabernet Sauvignon. Australian Journal of Grape and Wine Research, 4, 30–38.

    CAS  Google Scholar 

  • Segurel, M. A., Razungles, A. J., Riou, C., Salles, M., & Baumes, R. L. (2004) Contribution of dimethyl sulfide to the aroma of Syrah and Grenache Noir wines and estimation of its potential in grapes of these varieties. Journal of Agricultural and Food Chemistry, 52, 7084–7093.

    CAS  Google Scholar 

  • Shimazu, Y., & Watanabe, M. (1981) Effects of yeast strains and environmental conditions on formation of organic acids in must fermentations. Journal of Fermentation Technology, 59, 27–32.

    CAS  Google Scholar 

  • Silva Ferreira, A. C., Rodrigues, P., Hogg, T., & De Pinho, P. G. (2003) Influence of some technological parameters on the formation of dimethyl sulfide, 2-mercaptoethanol, methionol, and dimethyl sulfone in port wines. Journal of Agricultural and Food Chemistry, 51, 727–732.

    Google Scholar 

  • Smyth, H., Cozzolino, D., Herderich, M. J., Sefton, M. A., & Francis, I. L. (2005) Relating volatile composition to wine aroma: Identification of key aroma compounds in Australian white wines. In R. J Blair, P. J. Williams, & I. S. Pretorius (Eds.), Proceedings of the Twelfth Australian Wine Industry Technical Conference, Melbourne, Australia (pp. 31–33). Australian Wine Industry Technical Conference Inc.: Adelaide, SA.

    Google Scholar 

  • Soden, A., Francis, I. L., Gockowiak, H., Lee, T. H., & Henschke, P. A. (1999) The use of non-Saccharomyces yeasts in winemaking. In R. J. Blair, A. N. Sas, P. F. Hayes, P. F. & P. B. Høj (Eds.), Proceedings of the tenth Australian wine industry technical conference; 2–5 August 1998 (pp. 166–171). Adelaide, SA: Australian Wine Industry Technical Conference Inc.

    Google Scholar 

  • Soden, A., Francis, I. L., Oakey, H., & Henschke, P. A. (2000) Effects of co-fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. Australian Journal of Grape and Wine Research, 6, 21–30.

    CAS  Google Scholar 

  • Soles, R. M., Ough, C. S., Kunkee, R. E. (1982) Ester concentration differences in wine fermented by various species and strains of yeasts. American Journal of Enology and Viticulture, 33, 94–98.

    CAS  Google Scholar 

  • Sowalsky, R. A., & Noble, A. C. (1998) Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids. Chemical Senses, 23, 343–349.

    CAS  Google Scholar 

  • Spiropoulos, A., Tanaka, J., Flerianos, I., & Bisson, L. F. (2000) Characterization of hydrogen sulfide formation in commercial and natural wine isolates of Saccharomyces. American Journal of Enology and Viticulture, 51, 233–248.

    CAS  Google Scholar 

  • Stanley, G. A., Douglas, N. G., Every, E. J., Tzanatos, T., & Pamment, N. B. (1993) inhibition and stimulation of yeast growth by acetaldehyde. Biotechnology Letters, 15, 1199–1204.

    CAS  Google Scholar 

  • Stratford, M., & Rose, A. H. (1985a) Transport of sulfur dioxide by Saccharomyces cerevisiae. Journal of General Microbiology, 132, 1–6.

    Google Scholar 

  • Stratford, M., & Rose, A. H. (1985b) Hydrogen sulfide production from sulfite by Saccharomyces cerevisiae. Journal of General Microbiology, 131, 1417–1424.

    CAS  Google Scholar 

  • Strauss, C. R., Wilson, B., Gooley, P.R., & Williams, P. J. (1986) Role of monoterpenes in grape and wine flavor. ACS Symposium Series, 317, 222–242.

    CAS  Google Scholar 

  • Suárez, R., Suárez-Lepe, J. A., Morata, A., & Calderon, F. (2007) The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: A review. Food Chemistry, 102, 10–21.

    Google Scholar 

  • Subileau, M., Schneider, R., Salmon, J.-M., & Degryse, E. (2008) Nitrogen catabolite repression modulates the production of aromatic thiols characteristic of Sauvignon Blanc at the level of precursor transport. FEMS Yeast Research, 8, 771–780.

    CAS  Google Scholar 

  • Suomalainen, H. (1981) Yeast esterases and aroma esters in alcoholic beverages. Journal of the Institute of Brewing, 87, 296–300.

    CAS  Google Scholar 

  • Sutherland, C. M., Henschke, P. A., Langridge, P., & de Barros Lopes, M. (2003) Subunit and cofactor binding of Saccharomyces cerevisiae sulfite reductase—towards developing wine yeast with lowered ability to produce hydrogen sulfide. Australian Journal of Grape & Wine Research, 9, 186–193.

    CAS  Google Scholar 

  • Swiegers, J. H., & Pretorius, I. S. (2007) Modulation of volatile sulfur compounds by wine yeast. Applied Microbiology & Biotechnology, 74, 954–960.

    CAS  Google Scholar 

  • Swiegers, J. H., Bartowsky, E. J., Henschke, P. A., & Pretorius, I. S. (2005) Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research, 11, 139–173.

    CAS  Google Scholar 

  • Swiegers, J. H., Willmott, R., Hill-Ling, A., Capone, D. L., Pardon, K. H., Elsey, G. M., Howell, K. S., de Barros Lopes, M. A., Sefton, M. A., Lilly, M., & Pretorius, I. S. (2006) Modulation of volatile thiol and ester aromas by modified wine yeast. Flavour Science: recent advances and trends. In W. L. P. Bredie & M. A. Petersen (Eds.), Proceedings of the 11th Weurman Flavour Research Symposium; 21–24 June, 2005, Roskilde, Denmark. Amsterdam, The Netherlands: Elsevier, pp. 113–116.

    Google Scholar 

  • Swiegers, J. H., Capone, D. L., Pardon, K. H., Elsey, G. M., Sefton, M. A., Francis, I. L., & Pretorius, I. S. (2007) Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast, 24, 561–574.

    CAS  Google Scholar 

  • Swiegers J. H., Cordente, A. G., Willmott, R. L., King, E. S., Capone, D. L., Francis, I. L., & Pretorius, I. S. (2008a) Development of flavour-enhancing wine yeast. In R. J. Blai, P. J. Williams, I. S. Pretoris (Eds.), Proceedings of the 13th Australian Wine Industry Technical Conference, 2007, (pp. 184–188). Adelaide, SA: Australian Wine IndustryTechnical Conference Inc.

    Google Scholar 

  • Swiegers J. H., Ugliano, M., van der Westhuizen, T., & Bowyer, P. (2008b) Impact of yeast rehydration on the aroma of Sauvignon Blanc wine. Australian & New Zealand Grapegrower & Winemaker, 528, 68–71.

    Google Scholar 

  • Swiegers, J. H., Kievit, R. L., Siebert, T., Lattey, K. A., Bramley, B. R., Francis, I. L., King, E. S., & Pretorius, I. S. (2008c) The influence of yeast strain on the aromatic character of Sauvignon Blanc wine. Food Microbiology (in press).

    Google Scholar 

  • Thibon, C., Marullo, P., Claisse, O., Cullin, C., Dubourdieu, D., & Tominaga, T. (2008) Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. FEMS Yeast Research DOI: 10.1111/j.1567-1364.2008.00381.x

    Google Scholar 

  • Thomas, C. S., Boulton, R. B., Silacci, M. W., & Gubler, W. D. (1993) The effect of elemental sulfur, yeast strain, and fermentation medium on hydrogen sulfide production during fermentation. American Journal of Enology and Viticulture, 44, 211–216.

    CAS  Google Scholar 

  • Thomas, D., & Surdin-Kerjan, Y. (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 61, 503–532.

    CAS  Google Scholar 

  • Thornton, R. J., & Rodriguez, S. B. (1996) Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions. Food Microbiology, 13, 475–482.

    CAS  Google Scholar 

  • Treloar, J.D. and Howell, G.S. (2006) Influence of yeast and malolactic bacteria strain choice on 3-isobutyl-2-methoxypyrazine concentration in Cabernet Sauvignon and Franc wines. Abstracts of Wine Making Workshop, Vegetable & Farm Market EXPO, Great Lakes Fruit, Grand Rapids, MI, USA: <http://www.glexpo.com/abstracts/2006abstracts/WineMaking2006.pdf>.

  • Timberlake, C. F., & Bridle, P. (1976) Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. American Journal of Enology and Viticulture, 27, 97–105.

    CAS  Google Scholar 

  • Tokuyama, T., Kuraishi, H., Aida, K., & Uemura, T. (1973) Hydrogen sulfide evolution due to a pantothenic acid deficiency in the yeast requiring this vitamin, with special reference to the effect of adenosine triphosphate on yeast cysteine desulfhyrase. Journal of General and Applied Microbiology, 19, 439–466.

    CAS  Google Scholar 

  • Tominaga, T., Masneuf, I., & Dubourdieu, D. (1995) A S-cysteine conjugate precursor of aroma of white sauvignon. Journal International des Sciences de la Vigne et du Vin, 29, 227–232.

    CAS  Google Scholar 

  • Tominaga, T., Furrer, A., Henry, R., & Dubourdieu, D. (1998) Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. Flavour & Fragrance Journal, 29, 227–232.

    Google Scholar 

  • Tominaga, T., Blanchard, L., Darriet, P., & Dubourdieu, D. (2000) A powerful aromatic volatile thiol, 2-furanmethanethiol, exhibiting roast coffee aroma in wines made from several Vitis vinifera grape varieties. Journal of Agricultural and Food Chemistry, 48, 1799–1802.

    CAS  Google Scholar 

  • Torija, M. J., Beltran, G., Novo, M., Poblet, M., Guillamon, J. M., Mas, A., & Rozes, N. (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. International Journal of Food Microbiology, 85, 127–136.

    CAS  Google Scholar 

  • Torrea, D., Fraile, P., Garde, T., & Ancin, C. (2003) Production of volatile compounds in the fermentation of chardonnay musts inoculated with two strains of Saccharomyces cerevisiae with different nitrogen demands. Food Control, 14, 565–571.

    CAS  Google Scholar 

  • Trioli, G. (1996) Effect of Fermaid addition to white grape juice on the behaviour of several commercial yeast strains. Wein–Wissenschaft, 51, 204–209.

    CAS  Google Scholar 

  • Ubeda-Iranzo, J. F., González-Magaña, F., & González-Viñas, M. A. (2000) Evaluation of the formation of volatiles and sensory characteristics in the industrial production of white wines uing different commercial strains of the genus Saccharomyces. Food Control, 1, 143–147.

    Google Scholar 

  • Ugliano, M., Bartowsky, E. J., McCarthy, J., Moio, L., & Henschke, P. A. (2006) Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three Saccharomyces yeast strains Journal of Agricultural and Food Chemistry, 54, 6322–6331.

    CAS  Google Scholar 

  • Ugliano, M. & Moio, L. (2008). Free and hydrolytically released volatile compounds of Vitis vinifera L. cv. Fiano grapes as odour-active constituents of Fiano wine. Analytica Chimica ACTA, 621, 79–85.

    CAS  Google Scholar 

  • van der Merwe, C. A., & van Wyk, C. J. (1981) The contribution of some fermentation products to the odor of dry white wines. American Journal of Enology and Viticulture, 32, 41–46.

    Google Scholar 

  • Varela, C., Siebert, T., Cozzolino, D., Rose, L., Mclean, H., & Henschke, P. A. (2008) Discovering a chemical basis for differentiating wines made by fermentation with ‘wild’ and inoculated yeasts: role of yeast volatile compounds; submitted.

    Google Scholar 

  • Vaudano, E., Moruno, E. G., & Di Stefano, R. (2004) Modulation of geraniol metabolism during alcohol fermentation. Journal of the Institute of Brewing, 110, 213–219.

    CAS  Google Scholar 

  • Verduyn, C., Postma, E., Scheffers, W. A., & van Dijken, J. P. (1990a) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Journal of General Microbiology, 136, 395–403.

    CAS  Google Scholar 

  • Verduyn, C., Postma, E., Scheffers, W. A., & van Dijken, J. P. (1990b) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Journal of General Microbiology, 136, 405–412.

    CAS  Google Scholar 

  • Verstrepen, K., Derdelinckx, G., Dufour, J.-P., Winderickx, J., Thevelein, J. M., Pretorius, I. S., & Delvaux, F. R. (2003a) Flavour active esters: Adding fruitiness to beer – A practical review. Journal of Bioscience and Bioengineering, 96, 110–118.

    CAS  Google Scholar 

  • Verstrepen, K. J., Van Laere, S. D. M., Vanderhaegen, B. M. P., Derdelinckx, G., Dufour, J. P., Pretorius, I. S., Winderickx, J., Thevelein, J. M., & Delvaux, F. R. (2003b) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Applied and Environmental Microbiology, 69, 5228–5237.

    CAS  Google Scholar 

  • Vila, I., Sablayrolles, J.-M., Gerland, C., Baumes, R., Bayonove, C., & Barre, P. (2000) Comparison of ‘aromatic’ and ‘neutral’ yeast strains: influence of vinification conditions. Viticultural and Enological Science, 55, 59–66.

    Google Scholar 

  • Vilanova, M., Ugliano, M., Varela, C., Siebert, T., Pretorius, I. S., & Henschke, P. A. (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Applied Microbiology and Biotechnology, 77, 145–157.

    CAS  Google Scholar 

  • Vos, P. J. A., & Gray, R. S. (1979) The origin and control of hydrogen sulphide during fermentation of grape must. American Journal of Enology and Viticulture, 30, 187–197.

    CAS  Google Scholar 

  • Wakil, S. J., Stoops, J. K., & Joshi, V. (1983) Fatty acid synthesis and its regulation. Annual Review of Biochemistry, 52, 537–579.

    CAS  Google Scholar 

  • Watson, K. G. (1987) Temperature relations. In A. H. Rose & J. S. Harrison (Eds.), The Yeasts. Volume 2. Yeast and environment. 2nd ed. (pp. 41–72) London: Academic Press.

    Google Scholar 

  • Wenzel, K. (1989) The selection of a yeast mutant to reduce color losses during red wine fermentation. Vitis, 28, 111–120.

    Google Scholar 

  • Williams, P. J., Strauss, C. R., Wilson, B., & Massy Westropp, R. A. (1982) Studies on the hydrolysis of Vitis vinifera monoterpene precursor compounds and model monoterpene β-D-glucosides rationalizing the monoterpene composition of grapes. Journal of Agricultural and Food Chemistry, 30, 1219–1223.

    CAS  Google Scholar 

  • Wood, C., Siebert, T. E., Parker, M., Capone, D. L., Elsey, G. M., Pollnitz, A. P., Eggers, M., Meier, M., Vössing, T., Widder, S., Krammer, G., Sefton, M. A. & Herderich, M. J. (2008) From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. Journal of Agricultural and Food Chemistry, dx.doi.org/10.1021/jf800183k.

    Google Scholar 

  • Wurz, R. E. M., Kepner, R. E., & Webb, A. D. (1988) The biosynthesis of certain gamma-lactones from glutamic acid by film yeast activity on the surface of Flor Sherry. American Journal of Enology and Viticulture, 39, 234–238.

    CAS  Google Scholar 

  • Yoshimoto, H., Fujiwara, D., Momma, T., Ito, C., Sone, H., Kaneko, Y., & Tamai, Y. (1998) Characterization of the ATF1 and Lg-ATF1 genes encoding alcohol acetyltransferases in the bottom fermenting yeast Saccharomyces pastorianus. Journal of Fermentation and Bioengineering, 86, 15–20.

    CAS  Google Scholar 

  • Yunoki, K., Hirose, S., & Ohnishi, M. (2007) Ethyl esterification of long-chain unsaturated fatty acids derived from grape must by yeast during alcoholic fermentation. Bioscience Biotechnology and Biochemistry, 71, 3105–3109.

    CAS  Google Scholar 

  • Zambonelli, C., Mutinelli, P., & Pacchetti, G. (1975) Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae. I. Genetic analysis of leaky mutants of sulphite reductase. Archives of Microbiology, 102, 247–251.

    CAS  Google Scholar 

  • Zeeman, W., Snyman, J. P., & van Wyk, C. J. (1982) The influence of yeast strain and malolactic fermentation on some volatile bouquet substances and on the quality of table wines. In A. D. Webb (Ed.), Proceedings, University of California, davis Grape and Wine Symposium (pp. 79–90). Davis, CA: University of California Press.

    Google Scholar 

  • Zironi, R., Romano, P., Suzzi, G., Battistutta, F., & Comi, G. (1993) Volatile metabolites produced in wine by mixed and sequential cultures of Hanseniaspora guilliermondii or Kloeckera apiculata and Saccharomyces cerevisiae. Biotechnology Letters, 15, 235–238.

    CAS  Google Scholar 

  • Zohre, D. E., & Erten, H. (2002) The influence of Kloeckera apiculata and Candida pulcherrima yeasts on wine fermentation. Process Biochemistry 38, 319–324.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ugliano, M., Henschke, P.A. (2009). Yeasts and Wine Flavour. In: Moreno-Arribas, M.V., Polo, M.C. (eds) Wine Chemistry and Biochemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74118-5_17

Download citation

Publish with us

Policies and ethics