Insulin-Like Growth Factors (IGFs), IGF Binding Proteins, and Other Endocrine Factors in Milk: Role in the Newborn

  • Jürg. W. Blum
  • Craig R. Baumrucker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 606)

Abstract

The role of colostrum and milk in the neonate has been chiefly recognized as a comprehensive nutrient foodstuff. In addition, the provision of colostrum —the first milk —for early immune capacity has been well documented for several species. Colostrum is additionally a rich and concentrated source of various factors that demonstrate biological activity in vitro. Three hypotheses have been proposed for the phenotypic function of these secreted bioactive components: (1) only mammary disposal, (2) mammary cell regulation, and (3) neonatal function [gastrointestinal tract (GIT) or systemic]. Traditionally, it was assumed that the development of the GIT is preprogrammed and not influenced by events occurring in the intestinal lumen. However, a large volume of research has demonstrated that colostrum (or milk-borne) bioactive components can basically contribute to the regulation of GIT growth and differentiation, while their role in postnatal development at physiological concentrations has remained elusive. Much of our current understanding is derived from cell culture and laboratory animals, but experimentation with agriculturally important species is taking place.

This chapter provides an overview of work conducted primarily in neonatal calves and secondarily in other species on the effects on neonates of selected peptide endocrine factors (hormones, growth factors, in part cytokines) in colostrum. The primary focus will be on insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) and other bioactive peptides, but new interest and concern about steroids (especially estrogens) in milk are considered as well.

Keywords

endocrine factors colostrum milk neonate gastrointestinal tract metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahima, R. S.,&Flier, J. S. (2000). Leptin. Annual Review of Physiology, 62, 413–437.CrossRefGoogle Scholar
  2. Akers, R. M.,&Kaplan, R. M. (1989). Role of milk secretion in transport of prolactin from blood into milk. Hormones and Metabolic Research, 21, 362–365.Google Scholar
  3. Alavi, K., Schwartz, M. Z., Prasad, R., O'Connor, D.,&Funanage, V. (1989). Regulation of intestinal epithelial cell growth by transforming growth factor type  β. Proceedings from the National Academy of Science, 86, 1578–1582.CrossRefGoogle Scholar
  4. Alavi, K., Schwartz, M. Z., Prasad, R., O'Connor, D.,&Funanage, V. (2002). Leptin: A new growth factor for the small intestine. Journal of Pediatric Surgery, 37, 327–330.CrossRefGoogle Scholar
  5. Alexander, A. N.,&Carey, H. V. (1999). Oral IGF-I enhances nutrient and electrolyte absorption in neonatal piglet intestine. American Journal of Physiology, 277, G619–G625.Google Scholar
  6. Barnard, J. A., Beauchamp, R. D., Russell, W. E., Dubois, R. N.,&Coffey, R. J. (1995). Epidermal growth factor-related peptides and their relevance to gastrointestinal pathophysiology. Gastroenterology, 108, 564–580.CrossRefGoogle Scholar
  7. Bastian, S. E. P., Dunbar, A. J., Priebe, I. K., Owens, P. C.,&Goddard, C. (2001). Measurement of betacellulin levels in bovine serum, colostrum and milk. Journal of Endocrinology, 168, 203–212.CrossRefGoogle Scholar
  8. Baumrucker, C. R.,&Blum, J. W. (1994). Effects of dietary recombinant insulin-like growth factor on concentrations of hormones and growth factors in the blood of newborn calves. Journal of Endocrinology, 140, 15–21.Google Scholar
  9. Baumrucker, C. R., Hadsell, D. L.,&Blum, J. W. (1994a). Effects of dietary insulin-like growth factor I on growth and insulin-like growth factor receptors in neonatal calf intestine. Journal of Animal Science, 72, 428–433.Google Scholar
  10. Baumrucker, C. R., Green, M. H.,&Blum, J. W. (1994b). Effects of dietary rhIGF-I in neonatal calves on the appearance of glucose, insulin, D-xylose, globulins and γ-glutyamyltransferase in blood. Domestic Animal Endocrinology, 11, 393–403.CrossRefGoogle Scholar
  11. Baumrucker, C. R., Gibson, C. A., Shang, Y., Schanbacher, F. L.,&Green, M. H. (1999). Lactoferrin specifically binds to IGFBP-3 to cause competitive displacement of IGF from IGF:IGFBP-3 complexes and induces internalization and nuclear localization of lactoferrin:IGFBP-3 complexes in mammary epithelial cells. Proceedings of the 81st Endocrine Annual Meeting, San Diego, p. 404.Google Scholar
  12. Baumrucker, C. R.&Erondu, N. E. (2000). Insulin–like growth factor (IGF) system in the bovine mammary gland and milk. Journal of Mammary Gland Biology and Neoplasia, 5, 53–64.CrossRefGoogle Scholar
  13. Baumrucker, C. R., Gibson, C. A., Zavodovskaya, M., Schanbacher, F. L.,&Green, M. H. (2002). Interaction of lactoferrin and IGFBP-3 with the retinoid signaling system: Cell growth and apoptosis of mammary cells. Proceedings of the 84th Endocrine Annual Meeting, San Francisco, p. 362.Google Scholar
  14. Baumrucker, C. R., Gibson, C. A.,&Schanbacher, F. L. (2003). Bovine lactoferrin binds to insulin-like growth factor-binding protein-3. Domestic Animal Endocrinology, 24, 287–303.CrossRefGoogle Scholar
  15. Baxter, R. C. (2000). Insulin-like growth factor (IGF)-binding proteins: Interactions with IGFs and intrinsic bioactivities. American Journal of Physiology, 278, E967–E976.Google Scholar
  16. Berisha, B., Sinowwatz, F.,&Schams, D. (2004). Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles. Molecular Reproduction and Development, 67, 162–171.CrossRefGoogle Scholar
  17. Berlanga-Acosta, J., Playford, R. J., Mandir, N.,&Goodlad, R. A. (2001). Gastrointestinal cell proliferation and crypt fission are separate but complementary means of increasing tissue mass following infusion of epidermal growth factor in rats. Gut, 48, 803–807.CrossRefGoogle Scholar
  18. Bernt, K. M.,&Walker, W. A. (1999). Human milk as a carrier of biochemical messages. Acta Paediatrica, 88 (Suppl), 27–41.Google Scholar
  19. Berseth, C. L. (1987). Enhancement of intestinal growth in neonatal rats by epidermal growth factor in milk. American Journal of Physiology, 253, G662–G665.Google Scholar
  20. Bielecki, M., Kazewska, M., Woijtiowicz, Z.,&Gruszecki, W. (1973). The effect of orally administered erythropoietin on erythropoiesis in experimental animals. Acta Physiologica Polonica, 24, 351–356.Google Scholar
  21. Bittrich, S., Morel, C., Philipona, C., Zbinden, Y., Hammon, H.,&Blum, J. W. (2002). Physiological traits in preterm calves during their first week of life. Journal of Animal Physiology and Animal Nutrition, 86, 185–198.CrossRefGoogle Scholar
  22. Bittrich, S., Philipona, C., Hammon, H. M., Rome, V., Guilloteau, P.,&Blum, J. W. (2004). Preterm as compared with full-term neonatal calves are characterized by morphological and functional immaturity of the small intestine. Journal of Dairy Science, 87, 1786–1795.Google Scholar
  23. Blättler, U., Hammon, H. M., Morel, C., Philipona, C., Rauprich, A., Romé, V., le Huerou-Luron, I., Guilloteau, P.,&Blum, J. W. (2001). Feeding colostrum, its composition and feeding duration variably modify proliferation and morphology of the intestine and digestive enzyme activities of neonatal calves. Journal of Nutrition, 131, 1256–1263.Google Scholar
  24. Blum, J. W. (2005). Bovine gut development. In P. C. Garnsworthy (Ed.), Calf and Heifer Rearing (pp. 31–52). Nottingham, UK: Nottingham University Press.Google Scholar
  25. Blum, J. W. (2006). Nutritional physiology of neonatal calves. Journal of Animal Physiology and Animal Nutrition, 90, 1–11.CrossRefGoogle Scholar
  26. Blum, J. W.,&Baumrucker, C. R. (2002). Colostral and milk insulin-like growth factors and related substances: Mammary gland and neonatal (intestinal and systemic) targets. Domestic Animal Endocrinology, 23, 101–110.CrossRefGoogle Scholar
  27. Blum, J. W.,&Hammon, H. (2000). Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Lifestock Production Science, 66, 151–159.CrossRefGoogle Scholar
  28. Blum, J. W., Hadorn, U., Sallmann, H.,&Schuep, W. (1997). Delaying the colostrum intake by one day impairs plasma lipid, essential fatty acid, carotene, retinol and alpha-tocopherol status in neonatal calves. Journal of Nutrition, 127, 2024–2029.Google Scholar
  29. Blum, J. W., Zbinden, Y., Hammon, H. M.,&Chilliard, Y. (2005). Plasma leptin status in young calves: Effects of preterm birth, age, glucocorticoid status, suckling, and feeding with an automatic feeder or by bucket. Domestic Animal Endocrinology, 28, 119–133.CrossRefGoogle Scholar
  30. Bonnet, M., Delavaud, C., Laud, K., Gourdou, I., Lerous, C., Djiane, J.,&Chilliard, Y. (2002). Mammary leptin synthesis, milk leptin and their putative physiolgocial roles. Reproduction Nutrition and Development, 42, 399–413.CrossRefGoogle Scholar
  31. Bühler, C., Hammon, H., Rossi, G. L.,&Blum, J. W. (1998). Small intestinal morphology in eight-day-old calves fed colostrum for different durations or only milk replacer and treated with long-R3-insulin-like growth factor I and growth hormone.Journal of Animal Science, 76, 758–765.Google Scholar
  32. Burrin, D. G., Davis, T. A., Ebner, S., Schoknecht, P. A., Fiorotto, M. L., Reeds, P. J.,&McAvoy, S. (1995). Nutrient-independent and nutrient-dependent factors stimulate protein synthesis in colostrum-fed newborn pigs. Pediatric Research, 37, 593–599.CrossRefGoogle Scholar
  33. Burrin, D. G., Fiorotto, M. L.,&Hadsell, D. L. (1999). Transgenic hypersecretion of des(1-3) human insulin-like growth factor I in mouse milk has limited effects on the gastrointestinal tract in suckling pups. Journal of Nutrition, 129, 51–56.Google Scholar
  34. Burrin, D. G., Stoll, B., Fan, M. Z., Dudley, M. A., Donovan, S. M.,&Reeds, P. J. (2001). Oral IGF-I alters the posttranslational processing but not the activity of lactase-phlorizin hydrolase in formula-fed neonatal pigs. Journal of Nutrition, 131, 2235–2241.Google Scholar
  35. Bush, L. J.,&Staley, T. E. (1980). Absorption of colostral immunoglobulins in newborn calves. Journal of Dairy Science, 63, 672–680.Google Scholar
  36. Butler, J. E. (1974). Immunoglobulins of the mammary secretions. In B. L. Larson (Ed.), Lactation: A Comprehensive Treatise (pp. 217–256). New York: Academic Press.Google Scholar
  37. Butler, W. R.,&Des Bordes, C. K. (1980). Radioimmunoassay technique for measuring cortisol in milk. Journal of Dairy Science, 63, 474–477.Google Scholar
  38. Campana, W. M.,&Baumrucker, C. R. (1995). Hormones and growth factors in bovine milk. In R. G. Jensen (Ed.), Handbook of Milk Composition (pp. 476–494). San Diego: Academic Press.Google Scholar
  39. Ceppi, A.,&Blum, J. W. (1994). Effects of growth hormone on growth performance, haematology, metabolites and hormones in iron-deficient veal calves. Journal of Veterinary Medicine A, 41, 443–458.Google Scholar
  40. Cheli, F., Politis, I., Rossi, L., Fusi, E.,&Baldi, A. (2003). Effects of retinoids on proliferation and plasminogen activator expression in a bovine mammary epithelial cell line. Journal of Dairy Research, 70, 367–372.CrossRefGoogle Scholar
  41. Chelikani, P. K., Glimm, D. R.,&Kennelly, J. J. (2003). Short communication: Tissue distribution of leptin and leptin receptor mRNA in the bovine. Journal of Dairy Science, 86, 2369–2372.Google Scholar
  42. Chilliard, Y., Bonnet, M., Delavaud, C., Faulconnier, Y., Leroux, C., Djiane, J.,&Bocquier, F. (2001). Leptin in ruminants. Gene expression in adipose tissue and mammary gland, and regulation of plasma concentration. Domestic Animal Endocrinology, 21, 271–295.CrossRefGoogle Scholar
  43. Christen, S., Cattin, I., Knight, I., Wineyard, P. G., Blum, J. W.,&Elsasser, T. (2007). High plasma nitrite/nitrate levels in neonatal calves are associated with high plasma levels of S-nitrosoalbumin and other S-nitrosothiols. Experimental Biology and Medicine, 232, 309–322.Google Scholar
  44. Cordano, P., Hammon, H.,&Blum, J. W. (1998). Tissue distribution of insulin-like growth factor-I mRNA in 8-day-old calves. In J. W. Blum, T. Elsasser, and P. Guilloteau (Eds.), Symposium on Growth in Ruminants: Basic Aspects, Theory and Practice for the Future, Bern, p. 288.Google Scholar
  45. Cordano, P., Hammon, H. M., Morel, C., Zurbriggen, A.,&Blum, J. W. (2000). mRNA of insulin-like growth factor (IGF) quantification and presence of IGF binding proteins, and receptors for growth hormone, IGF-I and insulin, determined by reverse transcribed polymerase chain reaction, in the 1liver of growing and mature male cattle. Domestic Animal Endocrinology, 19, 191–208.CrossRefGoogle Scholar
  46. Cox, D. A.,&Burk, R. R. (1991). Isolation and characterisation of milk growth factor, a transforming-growth-factor-b2-related polypeptide from bovine milk. European Journal of Immunology, 197, 353–358.Google Scholar
  47. Coxam, V., Bauchart, D., Durand, D., Davicco, M.-J., Opmeer, F.,&Barlet, J. P. (1989). Nutrient effects on the hepatic production of somatomedin C (IGF1) in the milk-fed calf. British Journal of Nutrition, 62, 425–437.CrossRefGoogle Scholar
  48. Cummins, A. G.,&Thompson, F. M. (2002). Effect of breast milk and weaning on epithelial growth of the small intestine of humans. Gut, 51, 748–754.CrossRefGoogle Scholar
  49. David, C. W., Norrman, J., Hammon, H. M., Davis, W. C.,&Blum, J. W. (2003). Cell proliferation, apoptosis, and B- and T-lymphocytes in Peyer's patches of the ileum, in thymus and in lymph nodes of preterm calves, and in full-term calves at birth and on day 5 of life. Journal of Dairy Science, 86, 3321–3329.Google Scholar
  50. Donovan, S. M.,&Odle, J. (1994). Growth factors in milk as mediators of infant development. Annual Review of Nutrition, 14, 147–167.CrossRefGoogle Scholar
  51. Dvorak, B., Holubec, H., Lebouton, A. V., Wilson, J. M.,&Koldovsky, O. (1994). Epidermal growth factor and transforming growth factor- α mRNA in rat small intestine: In situ hybridization study. FEBS Letters, 352, 291–295.CrossRefGoogle Scholar
  52. Egli, C. P.,&Blum, J. W. (1998). Clinical, haematological, metabolic and endocrine traits during the first three months of life of suckling Simmentaler calves held in a cow-calf operation. Journal of Veterinary Medicine A, 45, 99–118.Google Scholar
  53. Ehrhardt, R. A., Greenwood, P. L., Bell, A. W.,&Boisclair, Y. R. (2003). Plasma leptin is regulated predominantly by nutrition in preruminant lambs. Journal of Nutrition, 133, 4196–4201.Google Scholar
  54. Elmlinger, M. W., Grund, R., Buck, M., Wollmann, H. A., Feist, N., Weber, M. M., Speer, C. P.,&Ranke, M. B. (1999). Limited proteolysis of the IGF binding protein-2 (IGFBP-2) by a specific serine protease activity in early breast milk. Pediatric Research, 46, 76–81.CrossRefGoogle Scholar
  55. Follingstad, A. H. (1978). Estriol, the forgotten estrogen? Journal of the American Medical Association, 239, 29–30.Google Scholar
  56. Fowlkes, J. L.,&Serra, D. M. (1996). Characterization of glycosaminoglycan-binding domains present in insulin-like growth factor-binding protein-3. Journal of Biological Chemistry, 271, 14676–14679.CrossRefGoogle Scholar
  57. Fritsche, S.,&Steinhart, H. (1999). Occurrence of hormonally active compounds in food: A review. European Food Research and Technology, 209, 153–179.CrossRefGoogle Scholar
  58. Garre, C., Bianchi-Scarra, G., Sirito, M., Musso, M.,&Ravazzolo, R. (1992). Lactoferrin binding sites and nuclear localization in K562(S) cells. Journal of Cell Physiology, 153, 477–482.CrossRefGoogle Scholar
  59. Georgiev, I. P., Georgieva, T. M., Pfaffl, M., Hammon, H. M.,&Blum, J. W. (2003). Insulin-like growth factor and insulin receptors in intestinal mucosa of neonatal calves. Journal of Endocrinology, 176, 121–132.CrossRefGoogle Scholar
  60. Georgieva, T. M., Georgiev, I. P., Ontsouka, E., Hammon, H. M., Pfaffl, M.,&Blum, J. W. (2003). Expression of insulin-like growth factors (IGF)-I and -II and of receptors for growth hormone, IGF-I, IGF-II, and insulin in the intestine and liver of pre- and full-term calves. Journal of Animal Science, 81, 2294–2300.Google Scholar
  61. Gibson, C. A., Fligger, J. M.,&Baumrucker, C. R. (1998). Specific insulin-like growth factor binding proteins-3 binding to membrane proteins of bovine mammary epithelial cells. Endocrine Society, 80th Annual Meeting Abstract, pp. P2–294.Google Scholar
  62. Gibson, C. A., S.taley, M. D.,&Baumrucker, C. R. (1999). Identification of IGF binding proteins in bovine milk and the demonstration of IGFBP-3 synthesis and release by bovine mammary epithelial cells. Journal of Animal Science, 77, 1547–1557.Google Scholar
  63. Gopal, P. K.,&Gill, H. S. (2000). Oligosaccharides and glycoconjugates in bovine milk and colostrum. British Journal of Nutrition, 84 (Suppl 1), S69–S74.Google Scholar
  64. Grongnet, J. F., Grongnet-Pinchon, E.,&Witowski, A. (1985). Neonatal levels of plasma thyroxine in male and female calves fed a colostrum or immunoglobulin diet or fasted for the first 28 hours of life. Reproduction, Nutrition and Development, 25, 537–543.CrossRefGoogle Scholar
  65. Grosvenor, C. E., Picciano, M. F.,&Baumrucker, C. R. (1993). Hormones and growth factors in milk. Endocrine Reviews, 14, 710–728.CrossRefGoogle Scholar
  66. Grütter, R.,&Blum, J. W. (1991a). Insulin and glucose in neonatal calves after peroral insulin and intravenous glucose administration. Reproduction, Nutrition and Development, 31, 389–397.CrossRefGoogle Scholar
  67. Grütter, R.,&Blum, J. W. (1991b). Insulin-like growth factor I in neonatal calves fed colostrum or whole milk and injected with growth hormone. Journal of Animal Physiology and Animal Nutrition, 66, 231–239.CrossRefGoogle Scholar
  68. Guilloteau, P., le Huerou-Luron, I., Toullec, R., Chayvialle, J. A., Zabielski, R.,&Blum, J. W. (1997). Gastrointestinal regulatory peptides and growth factors in young cattle and sheep. Journal of Veterinary Medicine A, 44, 1–23.Google Scholar
  69. Hadorn, U., Hammon, H., Bruckmaier, R. M.,&Blum, J. W. (1997). Delaying colostrum intake by one day has important effects on metabolic traits and on gastrointestinal and metabolic hormones in neonatal calves. Journal of Nutrition, 127, 2011–2023.Google Scholar
  70. Hammer, C. J., Quigley, J. D., Ribeiro, L.,&Tyler, H. D. (2005). Characterization of a colostrum replacer and a colostrum supplement containing IgG concentrate and growth factors. Journal of Dairy Science, 87, 106–111.Google Scholar
  71. Hammon, H.,&Blum, J. W. (1997a). Prolonged colostrum feeding enhances xylose absorption in neonatal calves. Journal of Animal Science, 75, 2915–2919.Google Scholar
  72. Hammon, H.,&Blum, J. W. (1997b). The somatotropic axis in neonatal calves can be modulated by nutrition, growth hormone, and Long-R3-IGF-I. American Journal of Physiology, 273, E130–E138.Google Scholar
  73. Hammon, H. M.,&Blum, J. W. (1998). Metabolic and endocrine traits of neonatal calves are influenced by feeding colostrum for different durations or only milk replacer. Journal of Nutrition, 128, 624–632.Google Scholar
  74. Hammon, H. M.,&Blum, J. W. (1999). Free amino acids in plasma of neonatal calves are influenced by feeding colostrum for different durations or by feeding only milk replacer. Journal of Animal Physiology and Animal Nutrition, 82, 193–204.CrossRefGoogle Scholar
  75. Hammon, H. M.,&Blum, J. W. (2002). Feeding different amounts of colostrum or only milk replacer modify receptors of intestinal insulin-like growth factors and insulin in neonatal calves. Domestic Animal Endocrinology, 22, 155–168.CrossRefGoogle Scholar
  76. Hammon, H. M., Zanker, I. A.,&Blum, J. W. (2000). Delayed colostrum feeding affects IGF-I and insulin plasma concentrations in neonatal calves. Journal of Dairy Science, 83, 85–92.Google Scholar
  77. Houle, V. M., Park, Y. K., Laswell, S. C., Freund, G. G., Dudley, M. A.,&Donovan, S. M. (2000). Investigation of three doses of oral insulin-like growth factor-I on jejunal lactase phlorizin hydrolase activity and gene expression and enterocyte proliferation and migration in piglets. Pediatric Research, 48, 497–503.CrossRefGoogle Scholar
  78. Howarth, G. S. (2003). Insulin-like growth factor-I and the gastrointestinal system: Therapeutic indications and safety implications. Journal of Nutrition, 133, 2109–2112.Google Scholar
  79. Iacopetta, B. J., Grieu, F., Horisberger, M.,&Sunahara, G. I. (1992). Epidermal growth factor in human and bovine milk. Acta Paediatrica Scandinavica, 81, 287–291.CrossRefGoogle Scholar
  80. Janowski, T., Zdunczyk, S., Malecki-Tepicht, J., Baranski, W.,&Ras, A. (2002). Mammary secretion of oestrogens in the cow. Domestic Animal Endocrinology, 23, 125–137.CrossRefGoogle Scholar
  81. Jaques, G., Noll, K., Wegmann, B., Witten, S., Kogan, E., Radulescu, R. T.,&Havemann, K. (1997). Nuclear localization of insulin-like growth factor binding protein 3 in a lung cancer cell line. Endocrinology, 138, 1767–1770.CrossRefGoogle Scholar
  82. Juul, S. E. (2003). Enterally dosed recombinant human erythropoietin does not stimulate erythroopoiesis in neonates. Journal of Pediatrics, 143, 321–326.CrossRefGoogle Scholar
  83. Juul, S. E., Zhao, Y., Dame, J. B., Du, Y., Hutson, A. D.,&Christensen, R. D. (2000). Origin and fate of erythropoietin in human milk. Pediatric Research, 48, 660–667.CrossRefGoogle Scholar
  84. Juul, S. E., Ledbetter, D. J., Joyce, A. E., Dame, C., Christensen, R. D., Zhao, Y.,&DeMarco, V. (2001). Erythropoietin acts as a trophic factor in neonatal rat intestine. Gut, 49, 182–189.CrossRefGoogle Scholar
  85. Kacsóh, B., Toth, B. E., Avery, L. M., Deaver, D. R., Baumrucker, C. R.,&Grosvenor, C. E. (1991). Biological and immunological activities of glycosylated and molecular weight variants of bovine prolactin in colostrum and milk. Journal of Animal Science, 69 (Supp1), 456.Google Scholar
  86. Kelly, D. (1994). Colostrum, growth factors and intestinal development in pigs. In W.-B. Souffrat&H. Hagemeister (Eds.), International Symposium on Digestive Physiology in Pigs (pp.151–166). Dummerstorf, Germany: EAAP Publication #80.Google Scholar
  87. King, P. J., Sullivan, T. M., Roberts, R. A., Philipps, A. F.,&Koldovsky, O. (1998). Human milk as a potential enteral source of erythropoietin. Pediatric Research, 43, 216–221.CrossRefGoogle Scholar
  88. Kinsbergen, M., Sallmann, H. P.,&Blum, J. W. (1994). Metabolic, endocrine and hematological responses to normal feeding, total parenteral nutrition and fasting in one-week old calves. Journal of Veterinary Medicine A, 41, 268–282.CrossRefGoogle Scholar
  89. Klagsbrun, M. (1978). Human milk stimulates DNA synthesis and cellular proliferation in cultured fibroblasts. Proceedings of the National Academy of Sciences USA, 75, 5057–5061.CrossRefGoogle Scholar
  90. Koldovsky, O. (1989). Hormones in milk: Their possible physiological significance for the neonate. In E. Ledbenthal (Ed.), Textbook of Gastroenterology and Nutrition in Infancy (pp. 97–119). New York: Raven Press.Google Scholar
  91. Koldovsky, O. (1995). Hormomes in milk. Vitamins and Hormones, 50, 77–149.Google Scholar
  92. Koyama, S.,&Podalsky, D. K. (1989). Differential expression of transforming growth factors a and b in rat intestinal epithelial cells. Journal of Clinical Investigation, 83, 1768–1773.Google Scholar
  93. Krüger, K., Blum, J. W.,&Greger, D. L. (2005). Abundances of nuclear receptor and nuclear receptor target gene mRNA in liver and intestine of neonatal calves are differentially influenced by feeding colostrum and vitamin A. Journal of Dairy Science, 88, 3971–3981.Google Scholar
  94. Kühne, S., Hammon, H. M., Bruckmaier, R. M., Morel, C., Zbinden, Y.,&Blum, J. W. (2000). Growth performance, metabolic and endocrine traits, and absorptive capacity in neonatal calves fed either colostrum or milk replacer at two levels. Journal of Animal Science, 78, 609–620.Google Scholar
  95. Legrand, D., Vigie, K., Said, E. A., Elass, E., Masson, M., Slomianny, M.-C., Carpentier, M., Briand, J.-P., Mazurier, J.,&Hovanessian, A. G. (2004). Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. European Journal of Biochemistry, 271, 203–217.CrossRefGoogle Scholar
  96. Levi-Montalcini, R.,&Cohen, S. (1960). Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Annals of the New York Academy of Sciences, 85, 324–341.CrossRefGoogle Scholar
  97. Louveau, I.,&Gondret, F. (2004). Regulation of development and metabolism of adipose tissue by growth hormone and the insulin-like growth factor system. Domestic Animal Endocrinology, 27, 241–255.CrossRefGoogle Scholar
  98. Mahle, Z. (2004). PPAR trilogy from metabolism to cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 7, 397–402.CrossRefGoogle Scholar
  99. Malekinejad, H., Scherpenisse, P.,&Bergwerff, A. A. (2006). Naturally occurring estrogens in processed milk and in raw milk (from gestated cows). Journal of Agricultural Food Chemistry, 54, 9785–9791.Google Scholar
  100. Malven, P. V., Head, H. H., Collier, R. J.,&Buonomo, F. C. (1987). Periparturient changes in secretion and mammary uptake of insulin and in concentrations of insulin and insulin-like growth factors in milk of dairy cows. Journal of Dairy Science, 70, 2254–2265.Google Scholar
  101. Massague, J. (1998). TGF β signal transduction. Annual Review of Biochemistry, 67, 753–791.CrossRefGoogle Scholar
  102. Maule Walker, F. M., Davis, A. J.,&Fleet, I. R. (1983). Endocrine activity of the mammary gland: Oestrogen and prostaglandin secretion by the cow and sheep mammary glands during lactogenesis. British Veterinary Journal, 139, 171–177.Google Scholar
  103. McGarrigle, H. H. G.,&Lachelin, G. C. L. (1983). Oestrone, oestradiol and oestriol glucosiduronates and sulphates in human puerperal plasma milk. Journal of Steroid Biochemistry, 18, 607–611.CrossRefGoogle Scholar
  104. Michanek, P., Ventorp, M.,&Westrom, B. (1989). Intestinal transmission of macromolecules in newborn dairy calves of different ages at first feeding. Research in Veterinary Science, 46, 375–379.Google Scholar
  105. Miettien, P. J., Berger, J. E., Meneses, J., Phung, Y., Pedersen, R. A., Werb, Z.,&Derynck, R. (1995). Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature, 376, 337–341.CrossRefGoogle Scholar
  106. Miller-Gilbert, A. L., Dubuque, S. H., Dvorak, B., Williams, C. S., Grille, J. G., Woodward, S. S., Koldovsky, O.,&Kling, P. J. (2001). Enteral absorption of erythropoietin in the suckling rat. Pediatric Research, 50, 261–267.CrossRefGoogle Scholar
  107. Mindnich, R., Moller, G.,&Adamski, J. (2004). The role of 17 β-hydroxysteroid dehydrogenases. Molecular and Cellular Endocrinology, 218, 7–20.CrossRefGoogle Scholar
  108. Mohan, R.,&Heyman, R. A. (2003). Orphan nuclear receptor modulators. Current Topics in Medical Chemistry, 3, 1637–1647.CrossRefGoogle Scholar
  109. Molkentin, J. (2000). Occurrence and biochemical characteristics of natural bioactive substances in bovine milk lipids. British Journal of Nutrition, 84 (Suppl 1), S47–S53.Google Scholar
  110. Montaner, B., Asbert, M.,&Perez-Tomas, R. (1999). Immunolocalization of transforming growth factor- α and epidermal growth factor receptor in the rat gastroduodenal area. Digestive Diseases and Sciences, 44, 1408–1416.CrossRefGoogle Scholar
  111. Muri, C., Schottstedt, T., Hammon, H. M., Meyer, E.,&Blum, J. W. (2005). Hematological, metabolic, and endocrine effects of feeding vitamin A and lactoferrin in neonatal calves. Journal of Dairy Science, 88, 1062–1077.Google Scholar
  112. Norrman, J., David, C. W., Sauter, S. N., Hammon, H. M.,&Blum, J. W. (2003). Effects of dexamethasone on lymphoid tissue in the gut and thymus of neonatal calves fed with colostrum or milk replacer. Journal of Animal Science, 81, 2322–2332.Google Scholar
  113. Nussbaum, A., Schiessler, G., Hammon, H. M.,&Blum, J. W. (2002). Growth performance and metabolic and endocrine traits in calves pair-fed by bucket or by automate starting in the neonatal period. Journal of Animal Science, 80, 1545–1555.Google Scholar
  114. Oda, S., Satoh, H., Sugawara, T., Matsunaga, N., Kuhara, T., Katoh, K., Shoji, Y., Nihei, A., Ohta, M.,&Sasaki, Y. (1989). Insulin-like growth factor-I, GH, insulin and glucagon concentrations in bovine colostrum and in plasma of dairy cows and neonatal calves around parturition. Comparative Biochemistry and Physiology A, 94, 805–808.CrossRefGoogle Scholar
  115. Ogawa, J., Sasahara, A., Taketoshi, Y., Sira, M. M., Futatani, T., Kanegane, H.,&Miyawaki, T. (2004). Role of transforming growth factor-b in breast milk for initiation of IgA production in newborn infants. Early Human Development, 77, 67–75.CrossRefGoogle Scholar
  116. Ontsouka, E. C., Bruckmaier, R. M.,&Blum, J. W. (2003). Fractionized milk composition during removal of colostrum and mature milk. Journal of Dairy Science, 86, 2005–2011.Google Scholar
  117. Ontsouka, E. C., Hammon, H. M.,&Blum, J. W. (2004a). Expression of insulin-like growth factors (IGF)-1 and -2, IGF-binding proteins-2 and -3, and receptors for growth hormone, IGF type-1 and -2 and insulin in the gastrointestinal tract of neonatal calves. Growth Factors, 22, 63–69.CrossRefGoogle Scholar
  118. Ontsouka, E. C., Philipona, C., Hammon, H. M.,&Blum, J. W. (2004b). Abundance of mRNA encoding for components of the somatotropic axis and insulin receptor in different layers of the jejunum and ileum of neonatal calves. Journal of Animal Science, 82, 3181–3188.Google Scholar
  119. Ontsouka, C. E., Sauter, S. N., Blum, J. W.,&Hammon, H. M. (2004c). Effects of colostrum feeding and dexamethasone treatment on mRNA levels of insulin-like growth factors (IGF)-I and -II, IGF binding proteins-2 and -3, and on receptors for growth hormone, IGF-I, IGF-II, and insulin in the gastrointestinal tract of neonatal calves. Domestic Animal Endocrinology, 26, 155–175.CrossRefGoogle Scholar
  120. Pakkanen, R. (1998). Determination of transforming growth factor-beta 2 (TFG- β2) in bovine colostrum samples. Journal of Immunoassay and Immuno-chemistry, 19, 23–37.Google Scholar
  121. Pfaffl, M. W., Georgieva, T. M., Georgiev, I. P., Ontsouka, E., Hageleit, M.,&Blum, J. W. (2002). Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2, and 3 in the bovine species. Domestic Animal Endocrinology, 22, 91–102.CrossRefGoogle Scholar
  122. Piatak, M., Jr., Luk, K.-C., Williams, B.,&Lifson, J. D. (1993). Quantitative competitive polymerase chain reaction for accurate quantitation of HIV DNA and RNA species. Bio/Technology, 14, 70–78.Google Scholar
  123. Pinotti, L.,&Rosi, F. (2006). Leptin in bovine colostrum and milk. Hormone and Metabolic Research, 38, 89–93.CrossRefGoogle Scholar
  124. Plaut, K. (1993). Role of epidermal growth factor and transforming growth factors in mammary development and lactation. Journal of Dairy Science, 76, 1526–1538.Google Scholar
  125. Plowchalk, D. R.,&Teeguarden, J. (2002). Development of a physiologically based pharmacokinetic model for estradiol in rats and humans: A biologically motivated quantitative framework for evaluating responses to estradiol and other endocrine-active compounds. Toxicological Science, 69, 60–78.CrossRefGoogle Scholar
  126. Pollack, P. F., Goda, T.,&Colony, P. C. (1987). Effects of enterally fed epidermal growth factor on the small and large intestine of the suckling rat. Regulatory Peptides, 17, 121–132.CrossRefGoogle Scholar
  127. Pope, G. S.,&Roy, J. H. (1953). The oestrogenic activity of bovine colostrum. Biochemical Journal, 53, 427–430.Google Scholar
  128. Prgomet, C., Prenner, M. L., Schwarz, F. J.,&Pfaffl, M. W. (2006). Effect of lactoferrin on selected immune system parameters and the gastrointestinal morphology in growing calves. Journal of Animal Physiology and Animal Nutrition, DOI:10.1111/j. 61439-0396.2006.00649.x.Google Scholar
  129. Purup, S., Jensen, S. K.,&Sejrsen, K. (2001). Differential effects of retinoids on proliferation of bovine mammary epithelial cells in collagen gel culture. Journal of Dairy Research, 68, 157–164.CrossRefGoogle Scholar
  130. Puvogel, G., Baumrucker, C. R., Sauerwein, H., Rühl, R., Ontsouka, E., Hammon, H. M.,&Blum, J. W. (2005). Effects of an enhanced vitamin A intake during the dry period on retinoids, lactoferrin, IGF-system, mammary gland epithelial cell apoptosis and subsequent lactation in dairy cows. Journal of Dairy Science, 88, 1785–1800.Google Scholar
  131. Quigley, J. D.,&Drewry, J. J. (1998). Nutrient and immunity transfer from cow to calf pre- and postcalving. Journal of Dairy Science, 81, 2779–2790.Google Scholar
  132. Rauprich, A. B., Hammon, H. M.,&Blum, J. W. (2000a). Effects of feeding colostrum and a formula with nutrient contents as colostrum on metabolic and endocrine traits in neonatal calves. Biology of the Neonate, 78, 53–64.CrossRefGoogle Scholar
  133. Rauprich, A. B., Hammon, H. M.,&Blum, J. W. (2000b). Influence of feeding different amounts of first colostrum on metabolic, endocrine, and health status and on growth performance in neonatal calves. Journal of Animal Science, 78, 896–908.Google Scholar
  134. Rérat, M., Zbinden, Y., Saner, R., Hammon, H.,&Blum, J. W. (2005). In vitro embryo production: Growth performance, feed efficiency, and hematological, metabolic, and endocrine status in calves. Journal of Dairy Science, 88, 2579–2593.Google Scholar
  135. Roberts, A. B. (1998). Molecular and cell biology of TGF- β. Mineral and Electrolyte Metabolism, 24, 111–119.CrossRefGoogle Scholar
  136. Roberts, A. B.,&Sporn, M. B. (1992). Differential expression of the TGF- β isoforms in embryogenesis suggests specific roles in developing and adult tissues. Molecular Reproduction and Development, 32, 91–98.CrossRefGoogle Scholar
  137. Roelen, B. A., Van Eijk, M. J., Van Rooijen, M. A., Bevers, M. M., Larson, J. H., Lewin, H. A.,&Mummery, C. L. (1998). Molecular cloning, genetic mapping, and developmental expression of a bovine transforming growth factor beta (TGF- β) type I receptor. Molecular Reproduction and Development, 49, 1–9.CrossRefGoogle Scholar
  138. Roffler, B., Fäh, A., Sauter, S. N., Hammon, H. M., Gallmann, P., Brem, G.,&Blum, J. W. (2003). Intestinal morphology, epithelial cell proliferation, and absorptive capacity in neonatal calves fed milk-born insulin-like growth factor-I or a colostrum extract. Journal of Dairy Science, 86, 1797–1806.Google Scholar
  139. Rogers, M. L., Belford, D. A., Francis, G. L.,&Ballard, F. J. (1995). Identification of fibrobla growth factors in bovine cheese whey. Journal of Dairy Research, 62, 501–507.Google Scholar
  140. Ronge, H.,&Blum, J. W. (1988). Insulin-like growth factor I binding proteins in dairy cows, calves and bulls. Acta Endocrinologica, 121, 153–160.Google Scholar
  141. Rufibach, K., Stefanoni, N., Rey-Roethlisberger, V., Schneiter, P., Doherr, M. G., Tappy, L.,&Blum, J. W. (2006). Protein synthesis in jejunum and liver of neonatal calves fed vitamin A and lactoferrin. Journal of Dairy Science, 89, 3075–3086.Google Scholar
  142. Sangild, P. T. (2001). Transitions in the life of the gut and brain. In J. E. Lindberg&B. Ogle (Eds.), Digestive Physiology of Pigs (pp. 3–17). Wallingford, UK: CABI Publishing.Google Scholar
  143. Sauter, S. N., Ontsouka, E., Roffler, B., Zbinden, Y., Philipona, C., Pfaffl, M., Breier, B. H., Blum, J. W.,&Hammon, H. M. (2003). Effects of dexamethasone and colostrum intake on the somatotropic axis in neonatal calves. American Journal of Physiology, 285, E252–E261.Google Scholar
  144. Sauter, S. N., Roffler, B., Philipona, C., Morel, C., Rome, V., Guilloteau, P., Blum, J. W.,&Hammon, H. M. (2004). Intestinal development in neonatal calves: Effects of glucocorticoids and dependence of colostrum feeding. Biology of the Neonate, 85, 94–104.CrossRefGoogle Scholar
  145. Schaudies, R. P., Grimes, J., Davis, D., Rao, R. K.,&Koldovsky, O. (1989). EGF content in the gastrointestinal tract of rats: Effect of age and fasting/feeding. American Journal of Physiology, 256, G856–G861.Google Scholar
  146. Schlimme, E., Martin, D.,&Meisel, H. (2000). Nucleosides and nucleotides: Natural bioactive substances in milk colostrum. British Journal of Nutrition, 84 (Suppl 1), S59–S68.Google Scholar
  147. Schottstedt, T., Muri, C., Morel, C., Philipona, C., Hammon, H. M.,&Blum, J. W. (2005). Effects of feeding vitamin A and lactoferrin on epithelium of lymphoid tissues of intestine of neonatal calves. Journal of Dairy Science, 88, 1050–1061.Google Scholar
  148. Scott, P., Kessler, M. A.,&Schuler, L. A. (1992). Molecular cloning of the bovine prolactin receptor and distribution of prolactin and growth hormone receptor transcripts in fetal and utero-placental tissues. Molecular and Cellular Endocrinology, 89, 47–58.CrossRefGoogle Scholar
  149. Semba, R. D.,&Juul, S. E. (2002). Erythropoietin in human milk: Physiology and role in infant health. Journal of Human Lactation, 18, 252–261.Google Scholar
  150. Shi, Y.,&Massague, J. (2003). Mechanisms of TGF- β signaling from cell membrane to the nucleus. Cell, 113, 685–700.CrossRefGoogle Scholar
  151. Shing, Y. W.,&Klagsbrun, M. (1984). Human and bovine milk contain different sets of growth factors. Endocrinology, 115, 273–282.CrossRefGoogle Scholar
  152. Shutt, D. A.,&Fell, L. R. (1985). Comparison of total and free cortisol in bovine serum and milk or colostrum. Journal of Dairy Science, 68, 1832–1834.CrossRefGoogle Scholar
  153. Sibilia, M.,&Wagner, E. F. (1995). Strain-dependent epithelial defects in mice lacking the EGF receptor. Science, 269, 234–238.CrossRefGoogle Scholar
  154. Skaar, T. C., Baumrucker, C. R., Deaver, D. R.,&Blum, J. W. (1994). Diet effects and ontogeny of alterations of circulating insulin-like growth factor binding proteins in newborn dairy calves. Journal of Animal Science, 72, 421–427.Google Scholar
  155. Sparks, A. L., Kirkpatrick, J. G., Chamberlain, C. S., Waldner, D.,&Spicer, L. J. (2003). Insulin-like growth factor-I and its binding proteins in colostrum compared to measures in serum of Holstein neonates. Journal of Dairy Science, 86, 2022–2029.Google Scholar
  156. Suliman, H. B., Logan-Henfrey, L., Majiwa, P. A. O., ole-Moiyoi, O.,&Feldman, B. F. (1999). Analysis of erythropoietin and erythropoietin receptor genes expression in cattle during acute infection with Trypanosoma congolense. Experimental Hematology, 27, 37–45.CrossRefGoogle Scholar
  157. Suzuki, Y. A., Shin, K.,&Lonnerdal, B. (2001). Molecular cloning and functional expression of a human intestinal lacctoferrin receptor. Biochemistry, 40, 15771–15779.CrossRefGoogle Scholar
  158. Talukder, M. J., Takeuchi, T.,&Harada, E. (2003). Receptor-mediated transport of lactoferrin into the cerebrospinal fluid via plasma in young calves. Journal of Veterinary Medical Science, 65, 957–964.CrossRefGoogle Scholar
  159. Teramo, K. A., Widness, J. A., Clemons, G. K., Voutilainen, P., McKinlay, S.,&Schwartz, R. (1987). Amniotic fluid erythropoietin correlates with umbilical plasma erythropoietin in normal and abnormal pregnancy. Obstetrics and Gynecology, 69, 710–716.Google Scholar
  160. Vacher, P. Y., Bestetti, G.,&Blum, J. W. (1995). Insulin-like growth factor I absorption in the jejunum of neonatal calves. Biology of the Neonate, 68, 354–367.Google Scholar
  161. Valentinis, B.,&Baserga, R. (1996). The IGF-I receptor protects tumor cells from apoptosis induced by high concentrations of serum. Biochemical and Biophysical Research Communications, 224, 362–368.CrossRefGoogle Scholar
  162. Van der Strate, B. W. A., Beljaars, L., Molema, G., Harmsen, M. C.,&Meijer, D. K. F. (2001). Antiviral activities of lactoferrin. Antiviral Research, 52, 225–239.CrossRefGoogle Scholar
  163. Vega, J. R., Gibson, C. A., Skaar, T. C., Hadsell, D. L.,&Baumrucker, C. R. (1991). Insulin-like growth factor (IGF)-I and -II and IGF binding proteins in serum and mammary secretions during the dry period and early lactation in dairy cows. Journal of Animal Science, 69, 2538–2547.Google Scholar
  164. Wallace, L. E., Hardin, J. A.,&Gall, D. G. (2001). Expression of EGF and ERBB receptor proteins in small intestinal epithelium. Gastroenterology, 120, A511.CrossRefGoogle Scholar
  165. Weinzimer, S. A., Gibson, T. B., Collet-Solberg, P. F., Khare, A., Liu, B.,&Cohen, P. (2001). Transferrin is an insulin-like growth factor-binding protein-3 binding protein. Journal of Clinical Endocrinology and Metabolism, 86, 1806–1813.CrossRefGoogle Scholar
  166. Widdowson, E. M., Colombo, V. E.,&Artavanis, C. A. (1976). Changes in the organs of pigs in response to feeding for the first 24 hours afer birth. Biology of the Neonate, 28, 272–281.Google Scholar
  167. Wise, A., Jupe, S. C.,&Rees, S. (2004). The identification of ligands at orphan G-protein coupled receptors. Annual Review of Pharmacology and Toxicology, 44, 43–66.CrossRefGoogle Scholar
  168. Wolinski, J., Biernat, M., Guilloteau, P., Westrom, B. R.,&Zabielski, R. (2003). Exogenous leptin controls the development of the small intestine in neonatal piglets. Journal of Endocrinology, 177, 215–222.CrossRefGoogle Scholar
  169. Xiao, X., Xiong, A., Chen, X., Mao, X.,&Zhou, X. (2002). Epidermal growth factor concentrations in human milk, cow's milk and cow's milk-based infant formulas. Chinese Medical Journal, 115, 451–454.Google Scholar
  170. Xu, R. J., Sangild, P. T., Zhang, Y. Q.,&Zhang, S. H. (2002). Bioactive compounds in porcine colostrum and milk and their effects on intestinal development in neonatal pigs. In Biology of the Intestine in Growing Animals (pp. 169–192). Amsterdam: Elsevier.Google Scholar
  171. Zanker, I. A., Hammon, H. M.,&Blum, J. W. (2000a). Beta-carotene, retinol and alpha-tocopherol status in calves fed the first colostrum at 0–2, 6–7, 12–13 or 24–25 hours after birth. International Journal of Vitamin and Nutrition Research, 70, 305–310.CrossRefGoogle Scholar
  172. Zanker, I. A., Hammon, H. M.,&Blum, J. W. (2000b). Plasma amino acid pattern during the first month of life in calves fed the first colostrum at 0–2 h or at 24–25 h after birth. Journal of Veterinary .Medicine A, 47, 107–121.CrossRefGoogle Scholar
  173. Zanker, I. A., Hammon, H. M.,&Blum, J. W. (2001a). Delayed feeding of first colostrum: Are there prolonged effects on haematological, metabolic and endocrine parameters and on growth performance in calves? Journal of Animal Physiology and Animal Nutrition, 85, 53–66.CrossRefGoogle Scholar
  174. Zanker, I. A., Hammon, H. M.,&Blum, J. W. (2001b). Activities of γ-glutamyltransferase, alkaline phosphatase and aspartate-aminotransferase in colostrum, milk and blood plasma of calves fed first colostrum at 0–2, 6–7, 12–13 and 24–25 h after birth. Journal of Veterinary Medicine A, 48, 179–185.Google Scholar
  175. Zapf, J. (1995). Physiological role of the insulin-like growth factor binding proteins. European Journal of Endocrinology, 132, 645–654.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jürg. W. Blum
    • 1
  • Craig R. Baumrucker
  1. 1.Veterinary Physiology, Vetsuisse Faculty, University of BernSwitzerland

Personalised recommendations