Skip to main content

Anticancer Cell Therapy with TRAIL-Armed CD34+ Progenitor Cells

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 610))

Dysregulated apoptosis plays a key role in the pathogenesis and progression of neoplastic disorders, allowing tumor cells to survive beyond their normal life-span, and to eventually acquire chemo-radioresistance (Laconi, Pani and Farber, 2000; Pommier, Sordet, Antony, Hayward and Kohn 2004). Thus, apoptotic pathways represent attractive therapeutic targets for restoring apoptosis sensitivity of malignant cells, or activating agonists of apoptosis. To modulate apoptotic genes and proteins, several strategies can be envisaged which target either the mitochondria-dependent or the death receptor-dependent pathways of apoptosis (Waxman and Schwartz 2003). Due to the ability of death receptor ligands to induce death in susceptible cell types, there has been considerable interest in the therapeutic potential of these cytokines as anticancer agents. Death receptor ligands of the tumor necrosis factor α (TNFα) superfamily are type II transmembrane proteins that signal to target cells upon cell-cell contact, or after protease-mediated release to the extracellular space (Ashkenazi 2002). Four members of this family—including Fas ligand (FasL), TNFα, TL1A, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)—stand out because of their ability to induce cell death (Wiley, Schooley, Smolak, Din, Huang, Nicholl, Sutherland, Smith, Rauch and Smith 1995; Wajant 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almasan, A., and Ashkenazi, A. (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14, 337–348.

    Article  PubMed  CAS  Google Scholar 

  • Armeanu, S., Lauer, U. M., Smirnow, I., Schenk, M., Weiss, T. S., Gregor, M., and Bitzer, M. (2003) Adenoviral gene transfer of tumor necrosis factor-related apoptosis-inducing ligand overcomes an impaired response of hepatoma cells, but causes severe apoptosis in primary human hepatocytes. Cancer Res. 63, 2369–2372.

    PubMed  CAS  Google Scholar 

  • Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor-necrosis factor superfamily. Nat Rev Cancer. 2, 420–430.

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., Blackie, C., Chang, L., Mcmurtrey, A. E., Hebert, A., Deforge, L., Koumenis, I. L., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z., and Schwall, R. H. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Bregni, M., Shammah, S., Malaffo, F., Di Nicola, M., Milanesi, M., Magni, M., Matteucci, P., Ravagnani, F., Jordan, C.T., Siena, S., and Gianni, A. M. (1998) Adenovirus vectors for gene transduction into mobilized blood CD34+ cells. Gene Ther. 5, 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Burger, J. A., and Kipps, T. J. (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their micro-environment. Blood. 107, 1761–1767.

    Article  PubMed  CAS  Google Scholar 

  • Carlo-Stella, C., Lavazza, C., Di Nicola, M., Cleris, L., Longoni, P., Milanesi, M., Magni, M., Morelli, D., Gloghini, A., Carbone, A., and Gianni, A. M. (2006) Antitumor Activity of Human CD34(+) Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Hum Gene Ther. 17, 1225–1240.

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan, A. M., Prasad, U., Shankar, S., Hamstra, D. A., Shanaiah, M., Chenevert, T. L., Ross, B. D., and Rehemtulla, A. (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A. 97, 1754–1759.

    Article  PubMed  CAS  Google Scholar 

  • De Palma, M., Venneri, M. A., Roca, C., and Naldini, L. (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 9, 789–795.

    Article  PubMed  CAS  Google Scholar 

  • Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., and Goodwin, R. G. (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity. 7, 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Ehtesham, M., Kabos, P., Gutierrez, M. A. R., Chung, N. H. C., Griffith, T. S., Black, K. L., and Yu, J. S. (2002) Induction of Glioblastoma Apoptosis Using Neural Stem Cell-mediated Delivery of Tumor Necrosis Factor-related Apoptosis-inducing Ligand. Cancer Res. 62, 7170–7174.

    PubMed  CAS  Google Scholar 

  • Ehtesham, M., Kabos, P., Kabosova, A., Neuman, T., Black, K. L., and Yu, J. S. (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res. 62, 5657–5663.

    PubMed  CAS  Google Scholar 

  • Emery, J. G., Mcdonnell, P., Burke, M. B., Deen, K. C., Lyn, S., Silverman, C., Dul, E., Appelbaum, E. R., Eichman, C., Diprinzio, R., Dodds, R. A., James, I. E., Rosenberg, M., Lee, J. C., and Young, P. R. (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 273, 14363–14367.

    Article  PubMed  CAS  Google Scholar 

  • Fulda, S., Wick, W., Weller, M., and Debatin, K. -M. (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nature Medicine. 8, 808–815.

    PubMed  CAS  Google Scholar 

  • Griffith, T. S., Anderson, R. D., Davidson, B. L., Williams, R. D., and Ratliff, T. L. (2000) Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol. 165, 2886–2894.

    PubMed  CAS  Google Scholar 

  • Griffith, T. S., and Broghammer, E. L. (2001) Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther. 4, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Hao, C., Song, J. H., Hsi, B., Lewis, J., Song, D. K., Petruk, K. C., Tyrrell, D. L., and Kneteman, N. M. (2004) TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res. 64, 8502–8506.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, K., Alvarez-Vallina, L., Crittenden, M., Gough, M., Chong, H., Diaz, R. M., Vassaux, G., Lemoine, N., and Vile, R. (2002) Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery? Hum Gene Ther. 13, 1263–1280.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, H., Yamada, Y., Harasawa, H., Tsuji, T., Murata, K., Sugahara, K., Tsuruda, K., Ikeda, S., Imaizumi, Y., Tomonaga, M., Masuda, M., Takasu, N., and Kamihira, S. (2005) Sensitivity of adult T cell leukaemia lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand. Br J Haematol. 128, 253–265.

    Article  PubMed  CAS  Google Scholar 

  • Jin, H., Aiyer, A., Su, J., Borgstrom, P., Stupack, D., Friedlander, M., and Varner, J. (2006) A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest. 116, 652–662.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, T. R., Stone, K., Nikrad, M., Yeh, T., Zong, W. X., Thompson, C. B., Nesterov, A., and Kraft, A. S. (2003) The proteasome inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL over-expressing cells. Oncogene. 22, 4953–4963.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J. B., Kabore, A. F., Strutinsky, J., Hu, X., Paul, J. T., Kropp, D. M., Kuschak, B., Begleiter, A., and Gibson, S. B. (2003) Role of the TRAIL/APO2-L death receptors in chlorambucil- and fludarabine-induced apoptosis in chronic lymphocytic leukemia. Oncogene. 22, 8356–8369.

    Article  PubMed  CAS  Google Scholar 

  • Kagawa, S., He, C., Gu, J., Koch, P., Rha, S. -J., Roth, J. A., Curley, S. A., Stephens, L. C., and Fang, B. (2001) Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res. 61, 3330–3338.

    PubMed  CAS  Google Scholar 

  • Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., Macdonald, D. D., Jin, D. K., Shido, K., Kerns, S. A., Zhu, Z., Hicklin, D., Wu, Y., Port, J. L., Altorki, N., Port, E. R., Ruggero, D., Shmelkov, S. V., Jensen, K. K., Rafii, S., and Lyden, D. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438, 820–827.

    Article  PubMed  CAS  Google Scholar 

  • Laconi, E., Pani, P., and Farber, E. (2000) The resistance phenotype in the development and treatment of cancer. Lancet Oncol. 1, 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Lapidot, T., Dar, A., and Kollet, O. (2005) How do stem cells find their way home? Blood. 106, 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, D., Shahrokh, Z., Marsters, S., Achilles, K., Shih, D., Mounho, B., Hillan, K., Totpal, K., Deforge, L., Schow, P., Hooley, J., Sherwood, S., Pai, R., Leung, S., Khan, L., Gliniak, B., Bussiere, J., Smith, C. A., Strom, S. S., Kelley, S., Fox, J. A., Thomas, D., and Ashkenazi, A. (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med. 7, 383–385.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, H., Lawrence, D., Varfolomeev, E., Totpal, K., Morlan, J., Schow, P., Fong, S., Schwall, R., Sinicropi, D., and Ashkenazi, A. (2002) Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med. 8, 274–281.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, H. N., and Ashkenazi, A. (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 10, 66–75.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Elkahloun, A. G., Messina, S. A., Ferrari, N., Xi, D., Smith, C. L., Cooper, R., Jr., Albert, P. S., and Fine, H. A. (2003) Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Res. 63, 8877–8889.

    PubMed  CAS  Google Scholar 

  • Lee, J., Hampl, M., Albert, P., and Fine, H. A. (2002) Antitumor activity and prolonged expression from a TRAIL-expressing adenoviral vector. Neoplasia (New York, N.Y.). 4, 312–323.

    Google Scholar 

  • Lieber, A., He, C. Y., Meuse, L., Schowalter, D., Kirillova, I., Winther, B., and Kay, M. A. (1997) The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol. 71, 8798–8807.

    PubMed  CAS  Google Scholar 

  • Mariani, S. M., Matiba, B., Armandola, E. A., and Krammer, P. H. (1997) Interleukin 1 beta-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells. J Cell Biol. 137, 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Mathas, S., Lietz, A., Anagnostopoulos, I., Hummel, F., Wiesner, B., Janz, M., Jundt, F., Hirsch, B., Johrens-Leder, K., Vornlocher, H. P., Bommert, K., Stein, H., and Dorken, B. (2004) c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med. 199, 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  • Mitsiades, C. S., Treon, S. P., Mitsiades, N., Shima, Y., Richardson, P., Schlossman, R., Hideshima, T., and Anderson, K. C. (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood. 98, 795–804.

    Article  PubMed  CAS  Google Scholar 

  • Mouzakiti, A., and Packham, G. (2003) Regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Burkitt’s lymphoma cell lines. Br J Haematol. 122, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Muhlenbeck, F., Schneider, P., Bodmer, J. L., Schwenzer, R., Hauser, A., Schubert, G., Scheurich, P., Moosmayer, D., Tschopp, J., and Wajant, H. (2000) The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem. 275, 32208–32213.

    Article  PubMed  CAS  Google Scholar 

  • Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., and Lang, F. F. (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65, 3307–3318.

    PubMed  CAS  Google Scholar 

  • Nakata, S., Yoshida, T., Horinaka, M., Shiraishi, T., Wakada, M., and Sakai, T. (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene. 23, 6261–6271.

    Article  PubMed  CAS  Google Scholar 

  • Pan, G., Ni, J., Wei, Y. F., Yu, G., Gentz, R., and Dixit, V. M. (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 277, 815–818.

    Article  PubMed  CAS  Google Scholar 

  • Pan, G., O’Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J., and Dixit, V. M. (1997) The receptor for the cytotoxic ligand TRAIL. Science. 276, 111–113.

    Article  PubMed  CAS  Google Scholar 

  • Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., and Ashkenazi, A. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 271, 12687–12690.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, I. F., Erff, M., and Ashkenazi, A. (2001) Direct stimulation of apoptotic signalling by soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clinical Cancer Research. 7, 1362–1369.

    PubMed  CAS  Google Scholar 

  • Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., and Kohn, K. W. (2004) Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 23, 2934–2949.

    Article  PubMed  CAS  Google Scholar 

  • Quesenberry, P. J., Colvin, G., and Abedi, M. (2005) Perspective: fundamental and clinical concepts on stem cell homing and engraftment: a journey to niches and beyond. Exp Hematol. 33, 9–19.

    Article  PubMed  Google Scholar 

  • Sheridan, J. P., Marsters, S. A., Pitti, R. M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C. L., Baker, K., Wood, W. I., Goddard, A. D., Godowski, P., and Ashkenazi, A. (1997) Control of TRAIL-induced apoptosis by a family of signalling and decoy receptors. Science. 277, 818–821.

    Article  PubMed  CAS  Google Scholar 

  • Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., and Andreeff, M. (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62, 3603–3608.

    PubMed  CAS  Google Scholar 

  • Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. N., Champlin, R. E., and Andreeff, M. (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 96, 1593–1603.

    Article  PubMed  CAS  Google Scholar 

  • Verfaillie, C. M. (1998) Adhesion receptors as regulators of the hematopoietic process. Blood. 92, 2609–2612.

    PubMed  CAS  Google Scholar 

  • Wajant, H. (2003) Death receptors. Essays Biochem. 39, 53–71.

    PubMed  CAS  Google Scholar 

  • Wajant, H., Moosmayer, D., Wuest, T., Bartke, T., Gerlach, E., Schonherr, U., Peters, N., Scheurich, P., and Pfizenmaier, K. (2001) Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene. 20, 4101–4106.

    Article  PubMed  CAS  Google Scholar 

  • Walczak, H., Degli-Esposti, M. A., Johnson, R. S., Smolak, P. J., Waugh, J. Y., Boiani, N., Timour, M. S., Gerhart, M. J., Schooley, K. A., Smith, C. A., Goodwin, R. G., and Rauch, C. T. (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. Embo J. 16, 5386–5397.

    Article  PubMed  CAS  Google Scholar 

  • Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., Smith, C., Smolak, P., Goodwin, R. G., Rauch, C. T., Schuh, J. C., and Lynch, D. H. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 5, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., and El-Deiry, W. S. (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 22, 8628–8633.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, D. J., and Schwartz, P. S. (2003) Harnessing apoptosis for improved anticancer gene therapy. Cancer Res. 63, 8563–8572.

    PubMed  CAS  Google Scholar 

  • Wen, J., Ramadevi, N., Nguyen, D., Perkins, C., Worthington, E., and Bhalla, K. (2000) Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood. 96, 3900–3906.

    PubMed  CAS  Google Scholar 

  • Wiley, S. R., Schooley, K., Smolak, P. J., Din, W. S., Huang, C. P., Nicholl, J. K., Sutherland, G. R., Smith, T. D., Rauch, C., and Smith, C. A. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 3, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G. S., Burns, T. F., Zhan, Y., Alnemri, E. S., and El-Deiry, W. S. (1999) Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res. 59, 2770–2775.

    PubMed  CAS  Google Scholar 

  • Zhang, L., and Fang, B. (2004) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther.

    Google Scholar 

  • Zheng, S. J., Wang, P., Tsabary, G., and Chen, Y. H. (2004) Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest. 113, 58–64.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Carlo-Stella, C., Lavazza, C., Carbone, A., Gianni, A.M. (2008). Anticancer Cell Therapy with TRAIL-Armed CD34+ Progenitor Cells. In: Colotta, F., Mantovani, A. (eds) Targeted Therapies in Cancer. Advances in Experimental Medicine and Biology, vol 610. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73898-7_8

Download citation

Publish with us

Policies and ethics