Skip to main content

Anticancer Drug Discovery and Development

  • Chapter
Targeted Therapies in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 610))

The marked contribution of molecular oncology within the past three decades has revealed that the multistage process of cancer growth and progression is attributable to the accumulation of genetic and epigenetic alterations. Malignant carcinomas display genetic alterations in multiple oncogenes and tumor suppressor genes, harbor epigenetic modifications that result in altered expression of several genes and contain chromosomal alterations, including aneuploidy and loss of heterozigosity (Vogelstein and Kinzler 1993; Lengauer, Kinzler, and Vogelstein 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, S. P. and Dutta, A. (2002) DNA replication in eukaryotic cells. Ann. Rev. Biochem. 71, 333–374.

    Article  PubMed  CAS  Google Scholar 

  • Benson, J. D., Chen, Y. P., Cornell-Kennon, S. A., Dorsch, M., Kim, S., Leszczyniecka, M., Sellers, W. R. and Lengauer, C. (2006) Validating cancer drug targets. Nature. 441, 451–456.

    Article  PubMed  CAS  Google Scholar 

  • Collins, I. and Workman, P. (2006) New approaches to molecular cancer therapeutics. Nat. Chem. Biol. 2, 689–700.

    Article  PubMed  CAS  Google Scholar 

  • Dalvit, C., Flocco, M., Veronesi, M. and Stockman, B. I. (2002) Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures. Comb. Chem. & HTS. 5, 605–611.

    CAS  Google Scholar 

  • Dalvit, C., Fagemess, P. E., Hadden, D. T. A., Sarver, R. W. and Stockman, B. I. (2003) Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc. 125, 7696–7703.

    Article  PubMed  CAS  Google Scholar 

  • Dalvit, C., Ardini, E., Flocco, M., Fogliatto, G. P., Mongelli, N. and Veronesi, M. (2003) A general NMR method for rapid, efficient, and reliable biochemical screening. J. Am. Chem. Soc. 125, 14620–14625.

    Article  PubMed  CAS  Google Scholar 

  • Dalvit, C., Ardini, E., Fogliatto, G. P., Mongelli, N. and Veronesi, M. (2004) Reliable high-throughput functional screening with 3-FABS. Drug Discov. Today 9, 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Dalvit, C., Mongelli, N., Papeo, G., Giordano, P., Veronesi, M., Moskau, D. and Kúmmerle, R. (2005) Sensitivity improvement in 19F NMR-based screening experiments: theoretical considerations and experimental applications. J. Am Chem. Soc. 127, 13380–13385.

    Article  PubMed  CAS  Google Scholar 

  • Dalvit, C., Caronni, D., Mongelli, N., Veronesi, M. and Vulpetti, A. (2006) NMR-based quality control approach for the identification of false positives and false negatives in high throughput screening. Curr. Drug Disc. Tech. 3, 115–124.

    Article  CAS  Google Scholar 

  • Degrassi, A., Russo, M., Scanziani, E., Giusti, A., Texido, G., Ceruti, R. and Pesenti, E. (2006) Magnetic resonance imaging and histopathological characterization of prostate tumors in TRAMP mice as model for preclinical trials. Prostate. 67, 396–404.

    Article  Google Scholar 

  • Fabbro, D., Parkinson, D. and Matter, A. (2002) Protein tyrosine kinase inhibitors: new treatment modalities? Curr. Opin. Pharmacol. 2, 374–381.

    Article  PubMed  CAS  Google Scholar 

  • Fancelli, D. and Moll, J. (2005) Inhibitors of Aurora kinases for the treatment of cancer. Expert Opin. Ther. Patents 15, 1169–1182.

    Article  CAS  Google Scholar 

  • Green, M. R. (2004) Targeting targeted therapy. N. Engl. J. Med. 350, 2191–2193.

    Article  PubMed  CAS  Google Scholar 

  • Hennessy, B. T., Smith D. L., Ram, P. T., Lu, Y. and Mills, G. B. (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature 4, 988–1004.

    Article  CAS  Google Scholar 

  • Hooft van Huijsduijnen, R. and Rommel, C. (2006) De-compartmentalizing target validation – thinking outside the pipeline boxes. J. Mol. Med. 84, 802–813.

    Article  PubMed  Google Scholar 

  • Jackson, J. R., Patrick, D. R., Dar, M. M. and Huang, P. S. (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer 7, 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, W. and Hunter, T. (1997) Identification and characterization of a human protein kinase related to budding yeast Cdc7p. Proc. Natl. Acad. Sci. USA 94, 14320–14325.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L., Mercer, K., Greenbaum, D., Bronson, R. T., Crowley, D., Tuveson, D. A. and Jacks, T. (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111.

    Article  PubMed  CAS  Google Scholar 

  • Kamb, A., Wee, S. and Langauer C. (2007) Why is cancer drug discovery so difficult? Nat. Rev. Drug Discov. 6, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D. S. and Van Etten, R. A. (2005) Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 353, 172–187.

    Article  PubMed  CAS  Google Scholar 

  • Lei, M., Kawasaki, Y., Young, M. R., Kihara, M., Sugino, A. and Tye, B. K. (1997) Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 11, 3365–3374.

    Article  PubMed  CAS  Google Scholar 

  • Lengauer, C., Kinzler, K. W. and Vogelstein B. (1998) Genetic instabilities in human cancers. Nature 396, 643–649.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J. S., Achilefu, S., Garbow, J. R., Laforest, R. and Welch, M. J. (2002) Small animal imaging: current technology and perspectives for oncological imaging. Eur. J. Cancer 38, 2173–2188.

    Article  PubMed  Google Scholar 

  • Lyne, P. D. (2002) Structure-based virtual screening: an overview. Drug. Discov. Today 7, 1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Montagnoli, A., Tenca, P., Sola, F., Carpani, D., Brotherton, D., Albanese, C. and Santocanale, C. (2004) Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res. 64, 7110–7116.

    Article  PubMed  CAS  Google Scholar 

  • Montagnoli, A., Valsasina, B., Brotherton, D., Troiani, S., Rainoldi, S., Tenca, P., Molinari, A. and Santocanale, C. (2006) Identification of Mcm2 Phosphorylation Sites by S-phase-regulating Kinases. J. Biol. Chem. 281, 10281–10290.

    Article  PubMed  CAS  Google Scholar 

  • Nature Biotech, (2005) A dose of reality for rational therapies. Nat. Biotech. 23, 267.

    Article  Google Scholar 

  • Overington, J. P., Al-Lazikani, B. and Hopkins, A. L. (2006) How many drug targets are there? Nat. Rev. Drug Disc. 5, 993–996.

    Article  CAS  Google Scholar 

  • Pegram, M. D., Pietras, R., Bajamonde, A., Klein, P. and Fyfe, G. (2005) Targeted therapy: wave of the future. J. Clin. Oncol. 23, 1776–1781.

    Article  PubMed  CAS  Google Scholar 

  • Sachdev, D. and Yee, D. (2007) Disrupting insulin-like growth factor signalling as a potential cancer therapy. Mol. Canc. Ther. 6, 1–12.

    Article  CAS  Google Scholar 

  • Sager, J. A. and Lengauer, C. (2003) New paradigms for cancer drug discovery? Canc. Biol. & Ther. 2, 178–181.

    Google Scholar 

  • Schwartz, G. K. and Shah, M. A. (2005) Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421.

    Article  PubMed  CAS  Google Scholar 

  • Sebolt-Leopold, J. S. and English, J. M. (2006) Mechanisms of drug inhibition of signalling molecules. Nature. 441, 457–462.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, G. I. (2006) Cyclin-Dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770–1783.

    Article  PubMed  CAS  Google Scholar 

  • Strebhardt, K. and Ullrich, A. (2006) Targeting polo-kinase 1 for cancer therapy. Nat. Rev. Cancer. 6, 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Suggitt, M. and Bibby, M. C. (2005) Fifty years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Can. Res. (11) 971–981.

    Google Scholar 

  • Trosset, J. Y., Dalvit C., Knapp, S., Fasolini M., Veronesi, M., Mantegani S., Gianellini M., Catana C., Sundström M., Stouten P. F. W. and Moll J. K. (2006) Inhibition of protein-protein interactions: the discovery of drug-like beta-catenin inhibitors by combining virtual and biophysical screening. Proteins 64, 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein, B. and Kinzler K. W. (1993) The multi-step nature of cancer. Trends Genet. 9, 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, I. B. and Joe, A. K. (2006) Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Onc. 3, 448–457.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Colotta, F. (2008). Anticancer Drug Discovery and Development. In: Colotta, F., Mantovani, A. (eds) Targeted Therapies in Cancer. Advances in Experimental Medicine and Biology, vol 610. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73898-7_3

Download citation

Publish with us

Policies and ethics