Clinical Development of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors: What Lessons Have We Learned?

  • Manuel Hidalgo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 610)

The epidermal growth factor receptor (EGFR) was selected as a strategic target for anticancer drug development almost two decades ago. This was based on evidence of receptor over-expression in human cancer and association with worse prognosis. Therapeutic strategies were developed and showed preclinical evidence of antitumor effects in animal models of EGFR-driven tumors. The fundamental process leading to EGFR dysregulation in human cancer were not known at that time. These agents were among the first class of targeted agents to enter the clinic at a time when the need to change the clinical development process use for cytotoxic agents to accommodate this new class of drugs was starting to be discussed. Two areas were of major interest. One was to base dose selection in pharmacodynamic endpoints rather than toxicity-based criteria. The second was to elucidate which patients are more likely to respond to these agents. Over the last few years this has been an important area of research. We have learned that while pharmacodynamic endpoints are ideal, the lack of robust and well validated analytical methods may lead to the wrong dose selection.


Epidermal Growth Factor Receptor Clin Oncol Epidermal Growth Factor Receptor Mutation Epidermal Growth Factor Receptor Expression Epidermal Growth Factor Receptor Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wells, A. EGF receptor. Int J Biochem Cell Biol 1999;31(6):637–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Arteaga, C. L. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 2001;19(18 Suppl):32S–40S.PubMedGoogle Scholar
  3. 3.
    Pinkas-Kramarski, R, Soussan, L, Waterman, H, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. Embo J 1996;15(10):2452–67.PubMedGoogle Scholar
  4. 4.
    Yarden, Y, Sliwkowski, M. X. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2(2):127–37.PubMedCrossRefGoogle Scholar
  5. 5.
    Graus-Porta, D, Beerli, R. R., Daly, J. M., Hynes, N. E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. Embo J 1997; 16(7):1647–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Worthylake, R., Opresko, L. K., Wiley, H. S. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 1999;274(13):8865–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Schlessinger, J. Cell signalling by receptor tyrosine kinases. Cell 2000;103(2):211–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Blenis, J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci U S A 1993;90(13):5889–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Burgering, B. M., Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995;376(6541):599–602.PubMedCrossRefGoogle Scholar
  10. 10.
    Lewis, T. S., Shapiro, P. S., Ahn, N. G. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998;74:49–139.PubMedCrossRefGoogle Scholar
  11. 11.
    Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 2002;296(5573):1655–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Tebar, F., Llado, A., Enrich, C. Role of calmodulin in the modulation of the MAPK signalling pathway and the transactivation of epidermal growth factor receptor mediated by PKC. FEBS Lett 2002;517(1–3):206–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Giordano, A., Rustum, Y. M., Wenner, C. E. Cell cycle: molecular targets for diagnosis and therapy: tumor suppressor genes and cell cycle progression in cancer. J Cell Biochem 1998;70(1):1–7.PubMedCrossRefGoogle Scholar
  14. 14.
    de Jong, J. S., van Diest, P. J., van der Valk, P., Baak, J. P. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. J Pathol 1998;184(1):53–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Wells, A. Tumor invasion: role of growth factor-induced cell motility. Adv Cancer Res 2000;78:31–101.PubMedCrossRefGoogle Scholar
  16. 16.
    Gibson, E. M., Henson, E. S., Haney, N., Villanueva, J., Gibson, S. B. Epidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligandinduced apoptosis by inhibiting cytochrome c release. Cancer Res 2002;62(2):488–96.PubMedGoogle Scholar
  17. 17.
    Salomon, D. S., Brandt, R., Ciardiello, F., Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19(3):183–232.PubMedCrossRefGoogle Scholar
  18. 18.
    Grandis, J. R., Melhem, M. F., Gooding, W. E., et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 1998;90(11):824–32.CrossRefGoogle Scholar
  19. 19.
    Mendelsohn, J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 2002;20(18 Suppl):1S–13S.PubMedGoogle Scholar
  20. 20.
    Woodburn, J. R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther 1999;82(2–3):241–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Nicholson, R. I., Gee, J. M., Harper, M. E. EGFR and cancer prognosis. Eur J Cancer 2001;37 Suppl 4:S9–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Rusch, V., Klimstra, D., Venkatraman, E., Pisters, P. W., Langenfeld, J., Dmitrovsky, E. Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small-cell lung cancer, but does not predict tumor progression. Clin Cancer Res 1997;3(4):515–22.PubMedGoogle Scholar
  23. 23.
    Fontanini, G., De Laurentiis, M., Vignati, S., et al. Evaluation of epidermal growth factorrelated growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin Cancer Res 1998;4(1):241–9.PubMedGoogle Scholar
  24. 24.
    Shi, D., He, G., Cao, S., et al. Over-expression of the c-erbB-2/neu-encoded p185 protein in primary lung cancer. Mol Carcinog 1992;5(3):213–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Masui, H., Kawamoto, T., Sato, J. D., Wolf, B., Sato, G., Mendelsohn J. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 1984;44(3):1002–7.PubMedGoogle Scholar
  26. 26.
    Sato, J. D., Kawamoto, T., Le, A. D., Mendelsohn, J., Polikoff, J., Sato, G. H. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med 1983;1(5):511–29.PubMedGoogle Scholar
  27. 27.
    Barker, A. J. G. K., Grundy, W., et al. Studies leading to the identification of ZD 1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg Med Chem 2001;11:1911–4.CrossRefGoogle Scholar
  28. 28.
    Barker, A. J., Gibson, K. H., Grundy, W., et al. Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg Med Chem Lett 2001;11(14):1911–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Anderson, N. G., Ahmad, T., Chan, K., Dobson, R., Bundred, N. J. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int J Cancer 2001;94(6):774–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Ciardiello, F., Caputo, R., Bianco, R., et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001;7(5):1459–65.PubMedGoogle Scholar
  31. 31.
    Baselga, J., Rischin, D., Ranson, M., et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 2002;20(21):4292–302.PubMedCrossRefGoogle Scholar
  32. 32.
    Herbst, R. S., Maddox, A.M., Rothenberg, M. L., et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in nonsmall-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol 2002;20(18):3815–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Ranson, M., Hammond, L. A., Ferry, D., et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 2002;20(9):2240–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Fukuoka, M., Yano, S., Giaccone, G., et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21(12):2237–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Kris, M. G., Natale, R. B., Herbst, R. S., et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small-cell lung cancer: a randomized trial. Jama 2003;290(16):2149–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Giaccone, G., Herbst, R. S., Manegold, C., et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 1. J Clin Oncol 2004;22(5):777–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Herbst, R. S., Giaccone, G., Schiller, J. H., et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial–INTACT 2. J Clin Oncol 2004;22(5):785–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Thatcher, N., Chang, A., Parikh, P., et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomized, placebo-controlled, multi-center study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005;366(9496):1527–37.PubMedCrossRefGoogle Scholar
  39. 39.
    Pollack, V. A., Savage, D. M., Baker, D. A., et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358, 774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther 1999;291(2):739–48.PubMedGoogle Scholar
  40. 40.
    Moyer, J. D., Barbacci, E. G., Iwata, K. K., et al. Induction of apoptosis and cell cycle arrest by CP-358, 774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997;57(21):4838–48.PubMedGoogle Scholar
  41. 41.
    Hidalgo, M., Siu, L. L., Nemunaitis, J., et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol 2001;19(13):3267–79.PubMedGoogle Scholar
  42. 42.
    Karp, D. F. D., Tensfeldt, T. G., et al. A phase I dose escalation study of epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor CP-358,774 in patients (pts) with advanced solid tumors. Lung Cancer 2000;29(Suppl 1):72.CrossRefGoogle Scholar
  43. 43.
    Perez-Soler, R., Chachoua, A., Huberman, M., et al. A phase II trial of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor OSI-774, following platinum-based chemotherapy, in patients (pts) with advanced, EGFR-expressing, non-small-cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 20: page 310, 2001 (abstr 1235). In.Google Scholar
  44. 44.
    Finkler, N., Gordon, A., Crozier, M., et al. Phase II Evaluation of OSI-774, a potent oral antagonist of the EGFR-TK in patients with advanced ovarian carcinoma. Proc Am Soc Clin Oncol 20: page 208, 2001 (abstr 831). In.Google Scholar
  45. 45.
    Soulieres, D., Senzer, N. N., Vokes, E. E., Hidalgo, M., Agarwala, S. S., Siu, L. L. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004;22(1):77–85.PubMedCrossRefGoogle Scholar
  46. 46.
    Clark, G., Pérez-Soler, R., Siu, L. A., Gordon, A., Santabárbara, P.. Rash severity is predictive of increased survival with erlotinib HCl. Proc Am Soc Clin Oncol page 196, 2003 (abstr 786). In.Google Scholar
  47. 47.
    Gatzemeier, U., Pluzanska, A., Szczesna, A., et al. Results of a phase III trial of erlotinib (OSI-774) combined with cisplatin and gemcitabine (GC) chemotherapy in advanced nonsmall-cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 2004, J Clin Oncol Vol 22, No 14S (July 15 Supplement), (abstr 7010). In.Google Scholar
  48. 48.
    Herbst, R. S., Prager, D., Hermann, R., et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced nonsmall-cell lung cancer. J Clin Oncol 2005;23(25):5892–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Shepherd, F. A., Rodrigues Pereira, J., Ciuleanu, T., et al. Erlotinib in previously treated nonsmall-cell lung cancer. N Engl J Med 2005;353(2):123–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Hirsch, F. R., Varella-Garcia, M., Bunn, P. A., Jr., et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 2003;21(20):3798–807.PubMedCrossRefGoogle Scholar
  51. 51.
    Cappuzzo, F., Hirsch, F. R., Rossi, E., et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 2005;97(9):643–55.PubMedCrossRefGoogle Scholar
  52. 52.
    Hirsch, F. R., Varella-Garcia, M., McCoy, J., et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol 2005;23(28):6838–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Cappuzzo, F., Varella-Garcia, M., Shigematsu, H., et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol 2005;23(22):5007–18.PubMedCrossRefGoogle Scholar
  54. 54.
    Tsao, M. S., Sakurada, A., Cutz, J. C., et al. Erlotinib in lung cancer - molecular and clinical predictors of outcome. N Engl J Med 2005;353(2):133–44.PubMedCrossRefGoogle Scholar
  55. 55.
    Lynch, T. J., Bell, D. W., Sordella, R., et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350(21):2129–39.PubMedCrossRefGoogle Scholar
  56. 56.
    Paez, J. G., Janne, P. A., Lee, J. C., et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304(5676):1497–500.PubMedCrossRefGoogle Scholar
  57. 57.
    Pao, W., Miller, V., Zakowski, M., et al. EGF receptor gene mutations are common in lung cancers from “never-smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004;101(36):13306–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Arao, T., Fukumoto, H., Takeda, M., Tamura, T., Saijo, N., Nishio, K. Small in-frame deletion in the epidermal growth factor receptor as a target for ZD6474. Cancer Res 2004;64(24):9101–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Kobayashi, S., Boggon, T. J., Dayaram, T., et al. EGFR mutation and resistance of non-smallcell lung cancer to gefitinib. N Engl J Med 2005;352(8):786–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Mitsudomi, T., Kosaka, T., Endoh, H., et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 2005;23(11):2513–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Riely, G. J., Pao, W., Pham, D., et al. Clinical course of patients with non-small-cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 2006;12(3 Pt 1):839–44.PubMedCrossRefGoogle Scholar
  62. 62.
    Greulich, H., Chen, T. H., Feng, W., et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2005;2(11):e313.PubMedCrossRefGoogle Scholar
  63. 63.
    Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., Mitsudomi, T. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 2004;64(24):8919–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Watanabe, T., Hirono, T., Koike, T., et al. Registration of resected lung cancer in Niigata Prefecture. Jpn J Thorac Cardiovasc Surg 2004;52(5):225–30.PubMedGoogle Scholar
  65. 65.
    Tang, X., Shigematsu, H., Bekele, B. N., et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 2005;65(17):7568–72.PubMedGoogle Scholar
  66. 66.
    Matsumoto, S., Takahashi, K., Iwakawa, R., et al. Frequent EGFR mutations in brain metastases of lung adenocarcinoma. Int J Cancer 2006.Google Scholar
  67. 67.
    Ji, H., Li, D., Chen, L., et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 2006.Google Scholar
  68. 68.
    Sordella, R., Bell, D. W., Haber, D. A., Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004;305(5687):1163–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Conde, E., Angulo, B., Tang, M., et al. Molecular context of the EGFR mutations: evidence for the activation of mTOR/S6K signaling. Clin Cancer Res 2006;12 (3 Pt 1):710–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Taron, M., Ichinose, Y., Rosell, R., et al. Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinibtreated chemorefractory lung adenocarcinomas. Clin Cancer Res 2005;11(16):5878–85.PubMedCrossRefGoogle Scholar
  71. 71.
    Pao, W., Miller, V. A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 2005;23(11):2556–68.PubMedCrossRefGoogle Scholar
  72. 72.
    Marchetti, A., Martella, C., Felicioni, L., et al. EGFR Mutations in Non-Small-Cell Lung Cancer: Analysis of a Large Series of Cases and Development of a Rapid and Sensitive Method for Diagnostic Screening With Potential Implications on Pharmacologic Treatment. J Clin Oncol 2005;23(4):857–65.PubMedCrossRefGoogle Scholar
  73. 73.
    Gebhardt, F., Zanker, K. S., Brandt B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 1999;274(19):13176–80.PubMedCrossRefGoogle Scholar
  74. 74.
    Eberhard, D. A., Johnson, B. E., Amler, L. C., et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005;23(25):5900–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Han, S. W., Kim, T. Y., Hwang, P. G., et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 2005;23(11):2493–501.PubMedCrossRefGoogle Scholar
  76. 76.
    Han, S. W., Kim, T. Y., Jeon, Y. K., et al. Optimization of patient selection for gefitinib in non-small-cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res 2006;12(8):2538–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Shih, J. Y., Gow, C. H., Yu, C. J., et al. Epidermal growth factor receptor mutations in needle biopsy/aspiration samples predict response to gefitinib therapy and survival of patients with advanced non-small-cell lung cancer. Int J Cancer 2006;118(4):963–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang, X. T., Li, L. Y., Mu, X. L., et al. The EGFR mutation and its correlation with response of gefitinib in previously treated Chinese patients with advanced non-small-cell lung cancer. Ann Oncol 2005;16(8):1334–42.PubMedCrossRefGoogle Scholar
  79. 79.
    Malik, S. N., Siu, L. L., Rowinsky, E. K., et al. Pharmacodynamic evaluation of the epidermal growth factor receptor inhibitor OSI-774 in human epidermis of cancer patients. Clin Cancer Res 2003;9(7):2478–86.PubMedGoogle Scholar
  80. 80.
    Druker, B. J.. Imatinib as a paradigm of targeted therapies. Adv Cancer Res 2004;91:1–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Slamon, D. J., Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that over-expresses HER2. N Engl J Med 2001;344(11):783–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Manuel Hidalgo

There are no affiliations available

Personalised recommendations