Skip to main content

Radiosurgery involves the use of radiation to treat tumors and is often an alternative to surgery. Many of the same advances in technology that have enabled the development of image-guided interventions have been applied in radiosurgery as well. In particular, the development of high resolution tomographic imaging for identification of the target treatment volume, as well as new methods for precisely delivering the radiation beam, have enabled more exact treatments. This chapter begins with a definition of radiosurgery and a brief historical review, followed by a description of the Gamma Knife® system for noninvasive treatment of intracranial brain disorders. The chapter describes conventional LINAC-based radiosurgery systems, and the CyberKnife® system robotic radiosurgery system, which can account for respiratory motion in the thorax and abdomen. The chapter concludes with a look at future tracking technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler JR, Jr., Chang SD, Murphy MJ, Doty J, Geis P, and Hancock SL. (1997). The Cyberknife: A frameless robotic system for radiosurgery. Stereotact Funct Neurosurg, 69, 124-128

    Article  Google Scholar 

  • Adler JR, Jr., Colombo F, Heilbrun MP, and Winston K. (2004). Toward an expanded view of radiosurgery. Neurosurgery, 55(6), 1374-1376

    Article  Google Scholar 

  • Balter JM, Wright JN, Newell LN, Friemel B, Dimmer S, Cheng Y, Wong J, Vertatschitsch E, and Mate TP. (2005). Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol Biol Phys, 61(3), 933-937

    Google Scholar 

  • Bank MI and Timmerman R. (2002). Superimposition of beams to vary shot size in gamma knife stereotactic radiosurgery. J Appl Clin Med Phys, 3(1), 19-25

    Article  Google Scholar 

  • Berbeco RI, Mostafavi H, Sharp GC, and Jiang SB. (2005). Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys Med Biol, 50(19), 4481-4490

    Article  Google Scholar 

  • Cheung JY, Yu KN, Yu CP, and Ho RT. (1998). Monte Carlo calculation of single-beam dose profiles used in a gamma knife treatment planning system. Med Phys, 25(9), 1673-1675

    Article  Google Scholar 

  • D’Souza WD, Naqvi SA, and Yu CX. (2005). Real-time intra-fraction-motion tracking using the treatment couch: A feasibility study. Phys Med Biol, 50(17), 4021-4033

    Article  Google Scholar 

  • Deng J, Guerrero T, Ma CM, and Nath R. (2004). Modelling 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Phys Med Biol, 49(9), 1689-1704

    Article  Google Scholar 

  • Deng J, Ma CM, Hai J, and Nath R. (2003). Commissioning 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Med Phys, 30(12), 3124-3134

    Article  Google Scholar 

  • Dieterich S. (2005). Dynamic tracking of moving tumors in stereotactic radio-surgery. In: Robotic Radiosurgery, ed. by Mould RF, (The CyberKnife Society Press, Sunnyvale), pp. 51-63

    Google Scholar 

  • Ding GX and Yu CW. (2001). A study on beams passing through hip prosthesis for pelvic radiation treatment. Int J Radiat Oncol Biol Phys, 51(4), 1167-1175

    Google Scholar 

  • Fu D and Kuduvalli G. (2006). Enhancing skeletal features in digitally reconstructed radiographs. In: Medical Imaging 2006: Image Processing, ed. by Reinhardt JM and Pluim JP, (The International Society for Optical Engineering, San Diego), Abstract 61442M

    Google Scholar 

  • Fu D, Kuduvalli G, Maurer CJ, Allision J, and Adler J. (2006). D target localization using 2D local displacements of skeletal structures in orthogonal X-ray images for image-guided spinal radiosurgery. Int J CARS, 1(Suppl 1), 198-200

    Google Scholar 

  • Gerszten PC, Ozhasoglu C, Burton SA, Vogel W, Atkins B, Kalnicki S, and Welch WC. (2003a). Evaluation of CyberKnife frameless real-time image-guided stereotactic radiosurgery for spinal lesions. Stereotact Funct Neurosurg, 81 (1-4), 84-89

    Article  Google Scholar 

  • Gerszten PC, Ozhasoglu C, Burton SA, Vogel WJ, Atkins BA, Kalnicki S, and Welch WC. (2003b). Cyberknife frameless real-time image-guided stereotactic radiosurgery for the treatment of spinal lesions. Int J Radiat Oncol Biol Phys, 57 (Suppl. 2), S370-371

    Google Scholar 

  • Groh BA, Siewerdsen JH, Drake DG, Wong JW, and Jaffray DA. (2002). A performance comparison of flat-panel imager-based mV and kV cone-beam CT. Med Phys, 29(6), 967-975

    Article  Google Scholar 

  • Hoisak JD, Sixel KE, Tirona R, Cheung PC, and Pignol JP. (2004). Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys, 60(4), 1298-1306

    Google Scholar 

  • Jaffray DA, Siewerdsen JH, Wong JW, and Martinez AA. (2002). Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys, 53(5), 1337-1349

    Article  Google Scholar 

  • Kavanagh BD, Ding M, Schefter TE, Stuhr K, and Newman FA. (2006). The dosimetric effect of inhomogeneity correction in dynamic conformal arc stereotactic body radiation therapy for lung tumors. J Appl Clin Med Phys, 7 (2), 58-63

    Article  Google Scholar 

  • Keall PJ, Cattell H, Pokhrel D, Dieterich S, Wong KH, Murphy MJ, Vedam SS, Wijesooriya K, and Mohan R. (2006). Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys, 65(5), 1579-1584

    Google Scholar 

  • Keall PJ, Siebers JV, Jeraj R, and Mohan R. (2003). Radiotherapy dose calculations in the presence of hip prostheses. Med Dosim, 28(2), 107-112

    Article  Google Scholar 

  • Kitamura K, Shirato H, Shimizu S, Shinohara N, Harabayashi T, Shimizu T, Kodama Y, Endo H, Onimaru R, Nishioka S, Aoyama H, Tsuchiya K, and Miyasaka K. (2002). Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT). Radiother Oncol, 62(3), 275-281

    Article  Google Scholar 

  • Kondziolka D, Maitz AH, Niranjan A, Flickinger JC, and Lunsford LD. (2002). An evaluation of the Model C gamma knife with automatic patient positioning. Neurosurgery, 50(2), 429-431

    Article  Google Scholar 

  • Kuo JS, Yu C, Petrovich Z, and Apuzzo ML. (2003). The cyberknife stereotactic radiosurgery system: Description, installation, and an initial evaluation of use and functionality. Neurosurgery, 53(5), 1235-1239

    Article  Google Scholar 

  • Kupelian PA, Forbes A, Willoughby TR, Wallace K, Manon RR, Meeks SL, Herrera L, Johnston A, and Herran JJ. (2007). Implantation and stability of metallic fiducials within pulmonary lesions. Int J Radiat Oncol Biol Phys, 69 (3), 777-785

    Google Scholar 

  • Laub WU and Nusslin F. (2003). Monte Carlo dose calculations in the treatment of a pelvis with implant and comparison with pencil-beam calculations. Med Dosim, 28(4), 229-233

    Article  Google Scholar 

  • Leksell L. (1951). The stereotaxic method and radiosurgery of the brain. Acta Chir Scand, 102(4), 316-319

    Google Scholar 

  • Mihaescu C, Dieterich S, Testa C, Mocanu M, and Cleary K (2004). Electro-magnetic marker tracking in the cyberknife suite: A feasibility study. 46th AAPM Annual Meeting, Pittsburgh, PA, USA, July 25-29

    Google Scholar 

  • Mu Z, Fu D, and Kuduvally G. (2006). Multiple fiducial identification using the Hidden Markov model in image guided radiosurgery. Conference on Computer Vision and Pattern Recognition Workshop, IEEE, June 17-22

    Google Scholar 

  • Muacevic A, Staehler M, Drexler C, Wowra B, Reiser M, and Tonn JC. (2006). Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine, 5 (4), 303-312

    Article  Google Scholar 

  • Murphy MJ, Chang SD, Gibbs IC, Le QT, Hai J, Kim D, Martin DP, and Adler JR, Jr. (2003). Patterns of patient movement during frameless image-guided radiosurgery. Int J Radiat Oncol Biol Phys, 55(5), 1400-1408

    Google Scholar 

  • Neicu T, Shirato H, Seppenwoolde Y, and Jiang SB. (2003). Synchronized moving aperture radiation therapy (SMART): Average tumour trajectory for lung patients. Phys Med Biol, 48(5), 587-598

    Article  Google Scholar 

  • Pishvaian AC, Collins B, Gagnon G, Ahlawat S, and Haddad NG. (2006). EUS-guided fiducial placement for cyberknife radiotherapy of mediastinal and abdominal malignancies. Gastrointest Endosc, 64(3), 412-417

    Article  Google Scholar 

  • Quinn AM. (2002). CyberKnife: A robotic radiosurgery system. Clin J Oncol Nurs, 6(3), 149, 156

    Article  Google Scholar 

  • Reichner CA, Collins BT, Gagnon GJ, Malik S, Jamis-Dow C, and Anderson ED. (2005). The placement of gold fiducials for cyberknife stereotactic radiosurgery using a modified transbronchial needle aspiration technique. J Bronchol, 12(4), 193-195

    Article  Google Scholar 

  • Ryu SI, Chang SD, Kim DH, Murphy MJ, Le QT, Martin DP, and Adler JR, Jr. (2001). Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery, 49(4), 838-846

    Article  Google Scholar 

  • Schlaefer A, Fisseler J, Dieterich S, Shiomi H, Cleary K, and Schweikard A. (2005). Feasibility of four-dimensional conformal planning for robotic radiosurgery. Med Phys, 32(12), 3786-3792

    Article  Google Scholar 

  • Schweikard A, Bodduluri M, and Adler J. (1998). Planning for camera-guided robotic radiosurgery. IEEE Trans Rob Autom, 14(6), 951-962

    Article  Google Scholar 

  • Schweikard A, Shiomi H, and Adler J. (2004). Respiration tracking in radiosurgery. Med Phys, 31(10), 2738-2741

    Article  Google Scholar 

  • Seiler PG, Blattmann H, Kirsch S, Muench RK, and Schilling C. (2000). A novel tracking technique for the continuous precise measurement of tumour positions in conformal radiotherapy. Phys Med Biol, 45(9), N103-110

    Article  Google Scholar 

  • Shirato H, Harada T, Harabayashi T, Hida K, Endo H, Kitamura K, Onimaru R, Yamazaki K, Kurauchi N, Shimizu T, Shinohara N, Matsushita M, Dosaka-Akita H, and Miyasaka K. (2003). Feasibility of insertion/implantation of 2.0 mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys, 56(1), 240-247

    Google Scholar 

  • Willoughby TR, Forbes AR, Buchholz D, Langen KM, Wagner TH, Zeidan OA, Kupelian PA, and Meeks SL. (2006). Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy. Int J Radiat Oncol Biol Phys, 66(2), 568-575

    Google Scholar 

  • Wu A, Lindner G, Maitz AH, Kalend AM, Lunsford LD, Flickinger JC, and Bloomer WD. (1990). Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys, 18(4), 941-949

    Google Scholar 

  • Yamamoto M. (1999). Gamma Knife radiosurgery: Technology, applications, and future directions. Neurosurg Clin N Am, 10(2), 181-202

    Google Scholar 

  • Yousefi S, Collins BT, Reichner CA, Anderson ED, Jamis-Dow C, Gagnon G, Malik S, Marshall B, Chang T, and Banovac F. (2007). Complications of thoracic computed tomography-guided fiducial placement for the purpose of stereotactic body radiation therapy. Clin Lung Cancer, 8(4), 252-256

    Article  Google Scholar 

  • Yu C, Main W, Taylor D, Kuduvalli G, Apuzzo ML, and Adler JR, Jr. (2004). An anthropomorphic phantom study of the accuracy of cyberknife spinal radiosurgery. Neurosurgery, 55(5), 1138-1149

    Article  Google Scholar 

  • Zhou T, Tang J, Dieterich S, and Cleary K. (2004). A robotic 3D motion simulator for enhanced accuracy in cyberknife stereotactic radiosurgery. In: Computer Aided Radiology and Surgery, (Elsevier, London, UK), pp. 323-328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dieterich, S., Rodgers, J., Chan, R. (2008). Radiosurgery. In: Peters, T., Cleary, K. (eds) Image-Guided Interventions. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73858-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73858-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73856-7

  • Online ISBN: 978-0-387-73858-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics