Design and Information Content of Arrays of Sorption-Based Vapor Sensors Using Solubility Interactions and Linear Solvation Energy Relationships

  • Jay W. GrateEmail author
  • Michael H. Abraham
  • Barry M. Wise
Part of the Integrated Analytical Systems book series (ANASYS)


The sorption of vapors by the selective polymeric layer on a chemical vapor sensor is described in detail and dissected into fundamental solubility interactions. The sorption process is modeled in terms of solvation parameters for vapor solubility properties and linear solvation energy relationships. The latter relationships model the log of the partition coefficient as the sum of terms related to specific types of interactions. The approaches are particularly applicable to the design and understanding of acoustic wave chemical vapor sensors such as those based on surface acoustic wave devices. It is shown how an understanding of solubility interactions informs the selection of polymers to obtain chemical diversity in sensor arrays and obtain the maximum amount of chemical information. The inherent dimensionality of the array data, as analyzed by principal components analysis, is consistent with this formulation. Furthermore, it is shown how new chemometric methods have been developed to extract the chemical information from array responses in terms of solvation parameters serving as descriptors of the detected vapor.


Partial Little Square Surface Acoustic Wave Sensor Response Sensor Array Chemical Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



JWG would especially like to acknowledge the many former coworkers and collaborators who played key roles in the development of polymer-coated acoustic wave sensors. He gratefully acknowledges funding from US Department of Energy, National Nuclear Security Administration, Office of Nonproliferation Research and Development (NA-22) for past funding and Laboratory Directed Research and Development funds of the US DOE, administered by the Pacific Northwest National Laboratory, for current funding. The William R. Wiley Environmental Molecular Sciences Laboratory, a US DOE scientific user facility operated for the DOE by PNNL is also acknowledged. The Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute.


  1. 1.
    Grate, J. W.; Abraham, M. H., Solubility interactions and the selection of sorbent coating materials for chemical sensors and sensor arrays, Sens. Actuators B 1991, 3, 85–111CrossRefGoogle Scholar
  2. 2.
    Grate, J. W.; Martin, S. J.; White, R. M., Acoustic wave microsensors, Anal. Chem. 1993, 65, 940A–948A, 987A–996ACrossRefGoogle Scholar
  3. 3.
    Grate, J. W.; Frye, G. C., Acoustic Wave Sensors, In Sensors Update; Baltes, H.; Goepel, W.; Hesse, J., Eds.; VSH, Weinheim, 1996, Vol. 2, 37–83Google Scholar
  4. 4.
    Grate, J. W., Acoustic wave microsensor arrays for vapor sensing, Chem. Rev. 2000, 100, 2627–2648CrossRefGoogle Scholar
  5. 5.
    Grate, J. W.; Kaganove, S. N.; Nelson, D. A., Carbosiloxane polymers for chemical sensors, Chem. Innovations 2000, 30(11), 29–37Google Scholar
  6. 6.
    Grate, J. W.; Nelson, D. A., Sorptive polymeric materials and photopatterned films for gas phase chemical microsensors, Proc IEEE 2003, 91, 881–889CrossRefGoogle Scholar
  7. 7.
    Janghorbani, M.; Freund, H., Application of a piezoelectric quartz crystal as a partition detector: Development of a digital sensor, Anal. Chem. 1973, 45, 325–332CrossRefGoogle Scholar
  8. 8.
    Edmunds, T. E.; West, T. S., A quartz crystal piezoelectric device for monitoring organic gaseous pollutants, Anal. Chim. Acta 1980, 117, 147–157CrossRefGoogle Scholar
  9. 9.
    McCallum, J. J.; Fielden, P. R.; Volkan, M.; Alder, J. F., Detection of toluene diisocyanate with a coated quartz piezoelectric crystal, Anal. Chim. Acta 1984, 162, 75–83CrossRefGoogle Scholar
  10. 10.
    Snow, A.; Wohltjen, H., Poly(ethylene maleate)-cyclopentadiene: A model reactive polymer-vapor system for evaluation of a saw microsensor, Anal. Chem. 1984, 56, 1411–1416CrossRefGoogle Scholar
  11. 11.
    Grate, J. W.; Snow, A.; Ballantine, D. S.; Wohltjen, H.; Abraham, M. H.; McGill, R. A.; Sasson, P., Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients, Anal. Chem. 1988, 60, 869–875CrossRefGoogle Scholar
  12. 12.
    Grate, J. W.; Wise, B. M.; Gallagher, N. B., Classical least squares transformations of sensor array pattern vectors into vapor descriptors. Simulation of arrays of polymer-coated surface acoustic wave sensors with mass-plus-volume transduction mechanisms, Anal. Chim. Acta 2003, 490, 169–184CrossRefGoogle Scholar
  13. 13.
    Wise, B. M.; Gallagher, N. B.; Grate, J. W., Analysis of combined mass and volume transducing sensors arrays, J. Chemometr 2002, 17, 463–469CrossRefGoogle Scholar
  14. 14.
    Grate, J. W.; Wise, B. M., A method for chemometric classification of unknown vapors from the responses of an array of volume-transducing sensors, Anal. Chem. 2001, 73, 2239–2244CrossRefGoogle Scholar
  15. 15.
    Grate, J. W.; Zellers, E. T., The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses, Anal. Chem. 2000, 72, 2861–2868CrossRefGoogle Scholar
  16. 16.
    Grate, J. W.; Kaganove, S. N.; Bhethanabotla, V. R., Examination of mass and modulus contributions to thickness shear mode and surface acoustic wave vapour sensor responses using partition coefficients, Faraday Discuss. 1997, 107, 259–283CrossRefGoogle Scholar
  17. 17.
    Grate, J. W., Sensing glass transitions in thin polymer films on acoustic wave microsensors, In Assignment of the Glass Transition, ASTM STP 1249; Seylor, R. J., Ed.; ASTM, Philadelphia, 1994, 153–164CrossRefGoogle Scholar
  18. 18.
    Grate, J. W.; Klusty, M.; McGill, R. A.; Abraham, M. H.; Whiting, G.; Andonian-Haftvan, J., The predominant role of swelling-induced modulus changes of the sorbent phase in determining the responses of polymer-coated surface acoustic wave vapor sensors, Anal. Chem. 1992, 64, 610–624CrossRefGoogle Scholar
  19. 19.
    Severin, E. J.; Lewis, N. S., Relationships among resonant freqency changes on a coated quartz crystal microbalance, thickness changes, and resistance responses of polymer-carbon black composite chemiresistors, Anal. Chem. 2000, 72, 2008–2015CrossRefGoogle Scholar
  20. 20.
    Abraham, M. H.; Doherty, R. M.; Kamlet, M. J.; Taft, R. W., A new look at acids and bases, Chem. Br. 1986, 22 551–554Google Scholar
  21. 21.
    Kamlet, M. J.; Doherty, R. M.; Abboud, J.-L. M.; Abraham, M. H.; Taft, R. W., Solubility: A new look, CHEMTECH 1986, 16, 566–576Google Scholar
  22. 22.
    Grate, J. W.; Abraham, M. H.; McGill, R. A., Sorbent polymer coatings for chemical sensors and arrays, In Handbook of Biosensors: Medicine, Food, and the Environment; Kress-Rogers, E.; Nicklin, S., Eds.; CRC Press, Boca Raton, FL, 1996, 593–612Google Scholar
  23. 23.
    Kamlet, M. J.; Taft, R. W., Linear solvation energy relationships. Local empirical rules - or fundamental laws of chemistry? A reply to the chemometricians, Acta Chem. Scandinavica B 1985, 39, 611–628CrossRefGoogle Scholar
  24. 24.
    Abraham, M. H., Scales of hydrogen-bonding: Their construction and application to physicochemical and biochemical processes, Chem. Soc. Rev. 1993, 22, 73–83CrossRefGoogle Scholar
  25. 25.
    Abraham, M. H.; Poole, C. F.; Poole, S. K., Classification of stationary phases and other materials by gas chromatography, J. Chromatogr. A 1999, 842, 79–114CrossRefGoogle Scholar
  26. 26.
    Abraham, M. H.; Ibrahim, A.; Zissimos, A. M., Determination of sets of solute descriptors from chromatographic measurements, J. Chromatogr. A 2004, 1037, 29–47CrossRefGoogle Scholar
  27. 27.
    Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Abraham, M. H.; Wise, B. M.; Gallagher, N. B., Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses, Anal. Chem. 2001, 73, 5247–5259CrossRefGoogle Scholar
  28. 28.
    McGill, R. A.; Abraham, M. H.; Grate, J. W., Choosing polymer coatings for chemical sensors, CHEMTECH 1994, 24, 27–37Google Scholar
  29. 29.
    Abraham, M. H.; Andonian-Haftvan, J.; Whiting, G.; Leo, A.; Taft, R. W., Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination, J. Chem. Soc. Perkin Trans. 1994, 2, 1777–1791Google Scholar
  30. 30.
    Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Duce, P. P.; Morris, J. J.; Taylor, P. J., Hydrogen bonding. Part 7. A scale of solute hydrogen-bond acidity based on log K values for complexation in tetrachloromethane, J. Chem. Soc. Perkin Trans. II 1989, 699–711Google Scholar
  31. 31.
    Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Morris, J. J.; Taylor, P. J., Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane, J. Chem. Soc. Perkin Trans. 1990, 2, 521–529Google Scholar
  32. 32.
    Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J., Hydrogen bonding. XVI. A new solute solvation parameter, pi2h, from gas chromatographic data, J. Chromatogr. 1991, 587, 213–228CrossRefGoogle Scholar
  33. 33.
    Abraham, M. H.; Fuchs, R., Correlation and prediction of gas-liquid partition coefficients in hexadecane and olive oil, J. Chem. Soc. Perkin Trans. II 1988, 523–527Google Scholar
  34. 34.
    Abraham, M. H.; Grellier, P. L.; McGill, R. A., Determinatin of olive oil-gas and hexadecane-gas partition coefficients, and caculation of the corresponding olive oil-water and hexadecane-water partition coefficients, J. Chem. Soc., Perkin Trans. II 1987, 797–803Google Scholar
  35. 35.
    Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J., Hydrogen bonding. Part 13. A new method for the characterisation of glc stationary phases - The laffort data set, J. Chem. Soc. Perkin Trans. 2 1990, 1451–1460Google Scholar
  36. 36.
    Abraham, M. H.; Andonian-Haftvan, J.; Du, C. M.; Diart, V.; Whiting, G.; Grate, J. W.; McGill, R. A., Hydrogen bonding. XXIX. The characterisation of fourteen sorbent coatings for chemical microsensors using a new solvation equation, J. Chem. Soc. Perkin Trans. 1995, 2, 369–378Google Scholar
  37. 37.
    Patrash, S. J.; Zellers, E. T., Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors, Anal. Chem. 1993, 65, 2055–2066CrossRefGoogle Scholar
  38. 38.
    Hierlemann, A.; Zellers, E. T.; Ricco, A. J., Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors, Anal. Chem. 2001, 73, 3458–3466CrossRefGoogle Scholar
  39. 39.
    Abraham, M. H.; Whiting, G. S.; Andonian-Haftvan, J.; Steed, J. W.; Grate, J. W., Hydrogen bonding XIX. The characterization of two poly(methylphenylsiloxane)s, J. Chromatogr 1991, 588, 361–364CrossRefGoogle Scholar
  40. 40.
    Grate, J. W., Siloxanes with strongly hydrogen bond donating functionalities, US Patent 5,756,631: 1998 Google Scholar
  41. 41.
    Grate, J. W.; Patrash, S. J.; Abraham, M. H., Method for estimating polymer-coated acoustic wave vapor sensor responses, Anal. Chem. 1995, 67, 2162–2169CrossRefGoogle Scholar
  42. 42.
    Grate, J. W.; Kaganove, S. N.; Patrash, S. J., Hydrogen-bond acidic polymers for surface acoustic wave vapor sensors and arrays, Anal. Chem. 1999, 71, 1033–1040CrossRefGoogle Scholar
  43. 43.
    Grate, J. W.; Wise, B. M.; Abraham, M. H., Method for unknown vapor characterization and classification using a multivariate sorption detector. Initial derivation and modeling based on polymer-coated acoustic wave sensor arrays and linear solvation energy relationships, Anal. Chem. 1999, 71, 4544–4553CrossRefGoogle Scholar
  44. 44.
    McGill, R. A.; Chung, R.; Chrisey, D. B.; Dorsey, P. C.; Matthews, P.; Pique, A.; Mlsna, T. E.; Stepnowski, J. L., Performance optimization of surface acoustic wave chemical sensors, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1998, 45, 1370–1379CrossRefGoogle Scholar
  45. 45.
    Pinnaduwage, L. A.; Thundat, T.; Hawk, J. E.; Hedden, D. L.; Britt, R.; Houser, E. J.; Stepnowski, S.; McGill, R. A.; Bubb, D., Detection of 2,4-dinitrotoluene using microcantilever sensors, Sens. Actuators B 2004, 99, 223–229CrossRefGoogle Scholar
  46. 46.
    Patel, S. V.; Mlsna, T. E.; Fruhberger, B.; Klaassen, E.; Cemalovic, S.; Baselt, D. R., Chemicapacitive microsensors for volatile organic compound detection, Sens. Actuators B 2003, B96, 541–553CrossRefGoogle Scholar
  47. 47.
    Cunningham, B. T.; Kant, R.; Daly, C.; Weinberg, M. S.; Pepper, J. W.; Clapp, C.; Bousquet, R.; Hugh, B., Chemical vapor detection using microfabricated flexural plate silicon resonator arrays, Proc. SPIE-Int. Soc. Opt. Eng. 2000, 4036, 151–162Google Scholar
  48. 48.
    Houser, E. J.; Mlsna, T. E.; Nguyen, V. K.; Chung, R.; Mowery, R. L.; Andrew McGill, R., Rational materials design of sorbent coatings for explosives: Applications with chemical sensors, Talanta 2001, 54, 469–485CrossRefGoogle Scholar
  49. 49.
    Mlsna, T. E.; Cemalovic, S.; Warburton, M.; Hobson, S. T.; Mlsna, D. A.; Patel, S. V., Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection, Sens. Actuators B 2006, 116, 192–201CrossRefGoogle Scholar
  50. 50.
    Patel, S. V.; Hobson, S. T.; Cemalovic, S.; Mlsna, T. E., Chemicapacitive microsensors for detection of explosives and tics, Proc. SPIE-Int. Soc. Opt. Eng. 2005, 5986, 59860M/1–59860M/10Google Scholar
  51. 51.
    Grate, J. W.; Kaganove, S. N.; Patrash, S. J.; Craig, R.; Bliss, M., Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors, Chem. Mater. 1997, 9, 1201–1207CrossRefGoogle Scholar
  52. 52.
    Grate, J. W.; Kaganove, S. N., Hydrosilylation: A versatile reaction for polymer synthesis, Polymer News 1999, 24, 149–155Google Scholar
  53. 53.
    Grate, J. W., Hydrogen-bond acidic polymers for chemical vapor sensing, Chem. Rev. 2008, 108, 726–745CrossRefGoogle Scholar
  54. 54.
    Lu, C. J.; Zellers, E. T., Multi-adsorbent preconcentration/focusing module for portable-gc/microsensor-array analysis of complex vapor mixtures, Analyst 2002, 127, 1061–1068CrossRefGoogle Scholar
  55. 55.
    Lewis, P. R.; Manginell, R. P.; Adkins, D. R.; Kottenstette, R. J.; Wheeler, D. R.; Sokolowski, S. S.; Trudell, D. E.; Byrnes, J. E.; Okandan, M.; Bauer, J. M.; Manley, R. G.; Frye-Mason, G. C., Recent advancements in the gas-phase microchemlab, IEEE Sensors J. 2006, 6, 784–795CrossRefGoogle Scholar
  56. 56.
    Lu, C. J.; Whiting, J.; Sacks, R. D.; Zellers, E. T., Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures, Anal. Chem. 2003, 75, 1400–1409CrossRefGoogle Scholar
  57. 57.
    Hsieh, M. D.; Zellers, E. T., Adaptation and evaluation of a personal electronic nose for selective multivapor analysis, J. Occup. Environ. Hyg. 2004, 1, 149–160Google Scholar
  58. 58.
    Ballantine, D. S.; Rose, S. L.; Grate, J. W.; Wohltjen, H., Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition, Anal. Chem. 1986, 58, 3058–3066CrossRefGoogle Scholar
  59. 59.
    Wohltjen, H.; Snow, A. W.; Barger, W. R.; Ballantine, D. S., Trace chemical vapor detection using saw delay line oscillators, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1987, UFFC-34, 172–177Google Scholar
  60. 60.
    Rose-Pehrsson, S. L.; Grate, J. W.; Ballantine, D. S.; Jurs, P. C., Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices, Anal. Chem. 1988, 60, 2801–2811CrossRefGoogle Scholar
  61. 61.
    Grate, J. W.; Klusty, M.; Barger, W. R.; Snow, A. W., Role of selective sorption in chemiresistor sensors for organophosphorous detection, Anal. Chem. 1990, 62, 1927–1924CrossRefGoogle Scholar
  62. 62.
    Fox, C. G.; Alder, J. F., Development of humidity correction algorithm for surface acoustic wave sensors. Part 1. Water adsorption isotherms on coated surface acoustic wave sensors, Anal. Chim. Acta 1991, 248, 337–44CrossRefGoogle Scholar
  63. 63.
    Snow, A. W.; Sprague, L. G.; Soulen, R. L.; Grate, J. W.; Wohltjen, H., Synthesis and evaluation of hexafluorodimethylcarbinol functionalized polymers as microsensor coatings, J. Appl. Poly. Sci. 1991, 43, 1659–1671CrossRefGoogle Scholar
  64. 64.
    Grate, J. W.; Rose-Pehrsson, S. L.; Venezky, D. L.; Klusty, M.; Wohltjen, H., Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface acoustic wave sensors, automated sample preconcentration, and pattern recognition, Anal. Chem. 1993, 65, 1868–1881CrossRefGoogle Scholar
  65. 65.
    Collins, G. E.; Rose-Pehrsson, S. L., Chemiluminescent chemical sensors for oxygen and nitrogen dioxide, Anal. Chem. 1995, 67, 2224–30CrossRefGoogle Scholar
  66. 66.
    Collins, G. E.; Buckley, L. J., Conductive polymer-coated fabrics for chemical sensing, Synthetic Metals 1996, 78, 93–101CrossRefGoogle Scholar
  67. 67.
    Grate, J. W.; Kaganove, S. N., Hybrid organic/inorganic copolymers films with strongly hydrogen-bond acidic properties for vapor sensing, Polymer Preprints 1997, 38, 955Google Scholar
  68. 68.
    Zellers, E. T.; Park, J.; Tsu, T.; Groves, W. J., Establishing a limit of recognition for a vapor sensor array, Anal. Chem. 1998, 70, 4191–4201CrossRefGoogle Scholar
  69. 69.
    Park, J.; Groves, W. A.; Zellers, E. T., Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis, Anal. Chem. 1999, 71, 3877–3886CrossRefGoogle Scholar
  70. 70.
    Cai, Q.-Y.; Park, J.; Heldsinger, D.; Hsieh, M.-D.; Zellers, E. T., Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors, Sens. Actuators 2000, B62, 121–130Google Scholar
  71. 71.
    Martin, S. D.; Poole, C. F.; Abraham, M. H., Synthesis and gas chromatographic evaluation of a high temperature hydrogen bond acid stationary phase, J. Chromatogr. A 1998, 805, 217–235CrossRefGoogle Scholar
  72. 72.
    Carey, W. P.; Beebe, K. R.; Kowalski, B. R.; Illman, D. L.; Hirschfeld, T., Selection of adsorbates for chemical sensor arrays by pattern recognition, Anal. Chem. 1986, 58, 149–153CrossRefGoogle Scholar
  73. 73.
    Zellers, E. T.; Batterman, S. A.; Han, M.; Patrash, S. J., Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays, Anal. Chem. 1995, 67, 1092–1106CrossRefGoogle Scholar
  74. 74.
    Rapp, M.; Boss, B.; Voigt, A.; Bemmeke, H.; Ache, H. J., Development of an analytical microsystem for organic gas detection based on surface acoustic wave resonators, Fresenius J. Anal. Chem. 1995, 352, 699–704CrossRefGoogle Scholar
  75. 75.
    Zellers, E. T.; Han, M., Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays, Anal. Chem. 1996, 68, 2409–2418CrossRefGoogle Scholar
  76. 76.
    Barie, N.; Rapp, M.; Ache, H. J., Uv crosslinked polysiloxanes as new coating materials for saw devices with high long-term stability, Sens. Actuators, B 1998, B46, 97–103CrossRefGoogle Scholar
  77. 77.
    Avila, F.; Myers, D. E.; Palmer, C., Correspondence analysis and adsorbate selection for chemical sensor arrays, J. Chemom. 1991, 5, 455–65CrossRefGoogle Scholar
  78. 78.
    Nakamoto, T.; Sasaki, S.; Fukuda, A.; Moriizumi, T., Selection method of sensing membranes in an odor sensing system, Sens. Mater. 1992, 4, 111–119Google Scholar
  79. 79.
    Yokoyama, K.; Ebisawa, F., Detection and evaluation of fragrances by human reactions using a chemical sensor based on adsorbate detection, Anal. Chem. 1993, 65, 673–7CrossRefGoogle Scholar
  80. 80.
    Cao, Z.; Lin, H.-G.; Wang, B.-F.; Wang, K.-M.; Yu, R.-Q., Piezoelectric crystal sensor array used as an organic vapor sensing system, Microchem. J. 1995, 52, 174–80CrossRefGoogle Scholar
  81. 81.
    Eda, Y.; Takisawa, N.; Shirahama, K., Responses of polymer-coated piezoelectric crystals to organic vapors, Sens. Mater. 1995, 7, 405–14Google Scholar
  82. 82.
    Cao, Z.; Lin, H.-G.; Wang, B.-F.; Chen, Z.-Z.; Ma, F.-L.; Wang, K.-M.; Yu, R.-Q., Discrimination of vapors of alcohols and beverage samples using piezoelectric crystal sensor array, Anal. Lett. 1995, 28, 451–66CrossRefGoogle Scholar
  83. 83.
    Deng, Z.; Stone, D. C.; Thompson, M., Selective detection of aroma components by acoustic wave sensors coated with conducting polymer films, Analyst 1996, 121, 671–679CrossRefGoogle Scholar
  84. 84.
    Cao, Z.; Lin, H.-G.; Wang, B.-F.; Xu, D.; Yu, R.-Q., A perfume odor-sensing system using an array of piezoelectric crystal sensors with plasticized pvc coatings, Fresenius' J. Anal. Chem. 1996, 355, 194–199Google Scholar
  85. 85.
    Lau, K.-T.; Micklefield, J.; Slater, J. M., The optimisation of sorption sensor arrays for use in ambient conditions, Sens. Actuators B 1998, B50, 69–79CrossRefGoogle Scholar
  86. 86.
    Hoyt, A. E.; Ricco, A. J.; Bartholomew, J. W.; Osbourn, G. C., Saw sensors for the room-temperature measurement of co2 and relative humidity, Anal. Chem. 1998, 70, 2137–2145CrossRefGoogle Scholar
  87. 87.
    Liron, Z.; Greenblatt, J.; Frishman, G.; Gratziani, N., Temperature effect and chemical response of surface acoustic wave (saw) single-delay-line chemosensors, Sens. Actuators B 1993, 12, 115–122CrossRefGoogle Scholar
  88. 88.
    Hierlemann, A.; Wiemar, U.; Kraus, G.; Schweizer-Berberich, M.; Goepel, W., Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous organic vapours in the environment, Sens. Actuators B 1995, 2627, 126–134CrossRefGoogle Scholar
  89. 89.
    Hierlemann, A.; Wiemar, U.; Kraus, G.; Gauglitz, G.; Goepel, W., Environmental chemical sensing using quartz microbalance sensor arrays: Application of multicomponent analysis techniques, Sens. Mater. 1995, 7, 179–189Google Scholar
  90. 90.
    Park, J.; Zhang, G.-Z.; Zellers, E. T., Personal monitoring instrument for the selective measurement of multiple organic vapors, Am. Ind. Hyg. Assoc. J. 2000, 61, 192–204Google Scholar
  91. 91.
    Beebe, K. R.; Pell, R. J.; Seasholtz, M. B., Chemometrics: A practical guide; Wiley, New York, 1998 Google Scholar
  92. 92.
    Wise, B. M.; Gallagher, N. B., The process chemometrics approach to process monitoring and fault detection, J. Process Control 1996, 6, 329–348CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jay W. Grate
    • 1
    Email author
  • Michael H. Abraham
    • 2
  • Barry M. Wise
    • 3
  1. 1.Chemistry and Materials Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of ChemistryUniversity College LondonLondonUK
  3. 3.Eigenvector Research, Inc.WenatcheeUSA

Personalised recommendations