Skip to main content

Prediction of Quartz Crystal Microbalance Gas Sensor Responses Using Grand Canonical Monte Carlo Method

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Our group has studied an odor sensing system using an array of Quartz Crystal Microbalance (QCM) gas sensors and neural-network pattern recognition. In this odor sensing system, it is important to know the properties of sensing films coated on Quartz Crystal Microbalance electrodes. These sensing films have not been experimentally characterized well enough to predict the sensor response. We have investigated the predictions of sensor responses using a computational chemistry method, Grand Canonical Monte Carlo (GCMC) simulations. We have successfully predicted the amount of sorption using this method. The GCMC method requires no empirical parameters, unlike many other prediction methods used for QCM based sensor response modeling. In this chapter, the Grand Canonical Monte Carlo method is reviewed to predict the response of QCM gas sensor, and the modeling results are compared with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearce, T. C.; Schiffman, S. S.; Nagle, H. T.; Gardner, J. W., Eds., Handbook of Machine Olfaction; Wiley-VCH, Weinheim, 2003

    Google Scholar 

  2. Nakamoto, T.; Moriizumi, T., Artificial olfactory system using neural network, In Handbook of Sensors and Actuators; Yamazaki H., (Ed.); Elsevier, Amsterdam, 1996, vol. 3, 263–272

    Google Scholar 

  3. King, W. H., Piezoelectric sorption detector, Anal. Chem. 36, 1964, 1735–1739

    Article  CAS  Google Scholar 

  4. Nakamoto, T.; Sasaki, S.; Fukuda, A.; Moriizumi, T., Selection method of sensing membranes in odor sensing system, Sens. Materials 1992, 4, 111–119

    CAS  Google Scholar 

  5. Allen, M. P.; Tidesley, D. J., Computer Simulation of Liquid, Oxford Press, Blackwell, 1987

    Google Scholar 

  6. Zauerbrey, G., Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung, Z. Phys. 1959, 155, 206–222

    Article  Google Scholar 

  7. Nakamoto, T.; Inadama, K.; Moriizumi, T., Study on quartz thickness-shear resonator immersed in liquid and its biosensor application, In Proceedings of 17th international Symposium on Acoustical Imaging, 1988, 619–626

    Google Scholar 

  8. Kanazawa, K. K.; Gordon II, J. G., Frequency of a quartz microbalance in contact with liquid, Anal. Chem. 1985, 57, 1770–1771

    CAS  Google Scholar 

  9. Muramatsu, H.; Tamiya, E.; Karube, I., Computation of equivalent circuit parameters of quartz crystals in contact with liquid and study of liquid properties, Anal. Chem. 1988, 60, 2142–2146

    Article  CAS  Google Scholar 

  10. Nakamoto, T.; Moriizumi, T., A theory of a quartz crystal microbalance based upon a mason equivalent circuit, Jpn. J. Phys. 1990, 29, 963–969

    Article  Google Scholar 

  11. Sugimoto, I.; Nakamura, M.; Kuwano, H., Organic gas sorption characteristics of plasma-deposited amino acid films, Anal. Chem. 1944, 66, 4316–4323

    Article  Google Scholar 

  12. Munos, S.; Nakamoto, T.; Moriizumi, T., A comparison between calixalene LB and cast films in odor sensing system, Sens. Mater. 1999, 11, 427–435

    Google Scholar 

  13. Munoz, S.; Nakamoto, T.; Moriizumi, T., Study of deposition of gas sensing films on quartz crystal microbalance using an ultrasonic atomizer, Sens. Actuators B 2005, 105, 144–149

    Article  Google Scholar 

  14. Nakamoto, T.; Kobayashi, T., Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance, IEEE Trans. UFFC 1994, 41, 806–811

    CAS  Google Scholar 

  15. Grate, J. W.; Patrash, S. L.; Abraham, M. H., Method for estimating polymer-coated acoutic wave vapor sensor responses, Anal. Chem. 1995, 67, 2162–2169

    Article  CAS  Google Scholar 

  16. Grate, J. W.; Abraham, M. H., Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays, Sens. Actuators B, 1991, 3, 85–111

    Article  Google Scholar 

  17. Hansh, C.; Fujita, T., ρ−σ−Π analysis. A method for the correlation of biological activity and chemical structures, J. Am. Chem. Soc. 1964, 86, 1616–1626

    Google Scholar 

  18. Ohnishi, M.; Ishimoto, C.; Seto, J., The biomimetic property of gas-sensitive films for odorants constructed by the Langmuir-Blodgett technique, Thin Solid Film 1992, 210, 455–457

    Article  Google Scholar 

  19. Nakamoto, T.; Fukuda, A.; Moriizumi, T., Prediction method of quartz resonator gas sensor response, Trans. IEICE 1991, J74-C-II 450–457 (in Japanese)

    Google Scholar 

  20. McReynolds, W. O., Gas chromatographic retention data, Preston Technical Abstracts Company, 1966

    Google Scholar 

  21. Wison, G. M., Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing, J. Am. Chem. Soc. 1964, 86 127–130

    Article  Google Scholar 

  22. Fukuda, A.; Misawa; Nakamoto, T.; Moriizumi, T.; Analysis of sorption phenomenon of vapor mixture to quartz resonator gas sensor using Wilson equation, Extended abstracts, Spring Meeting of the Japan Society of Applied Physics and related societies, 1992, 29aQ-2 (in Japanese)

    Google Scholar 

  23. Okahata, Y., Molecular recognition on synthetic lipid membranes, Membrane 1991, 16, 26–33 (in Japanese)

    Article  CAS  Google Scholar 

  24. Small, P. A., Some factors affecting the solubility of polymers, J. Appl. Chem. 1953, 3, 71–80.

    Article  CAS  Google Scholar 

  25. Kurosawa, S.; Kano, N., Characteristics of sorption of various gases to plasma-polymerized copper phthalocyanine, Langmuir, 1992, 8, 254–256.

    Article  CAS  Google Scholar 

  26. Heckl, W. M.; Marassi, F. M.; Kallury, K. M. R.; Stone, D. C.; Thompson, M., Surface acoustic wave sensor response and molecular modeling: Selective binding of nitrobenzene derivatives to (aminopropyl)triethoxysilane, Anal. Chem. 1990, 62, 32–37

    Article  CAS  Google Scholar 

  27. Fujimoto, A.; Kanashima, T.; Okuyama, M., Molecular orbital calculation of surface reaction of SnO2 gas sensors for aminic and carboxylic smells, Digest of Technical papers, Transducers03, 2003, 540–543

    Google Scholar 

  28. Yamazaki, T.; Watanuki, I.; Ozawa, S.; Ogino, Y., An IR study on methane adsorbed on ZSM-5 type zeolites, Nippon Kagaku kaishi 1987, 8, 1535–1540 (in Japanese)

    Article  Google Scholar 

  29. Nakamura, K.; Nakamoto, T.; Moriizumi, T., Prediction of quartz crystal microbalance gas sensor responses using a computational chemistry method, Sens. Actuators B 1999, 61, 6–11

    Article  Google Scholar 

  30. Osawa, E.; Hirano, T.; Honda, K., Introduction of computational chemistry, Koudansha 1994, 61–61 (in Japanese)

    Google Scholar 

  31. Nakamura, K.; Nakamoto, T; Moriizumi, T., Prediction of QCM gas sensor responses and calculation of electrostatic contribution to sensor responses using a computational chemistry method, Mater. Sci. Eng. C 2000, 12, 3–7

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank his former student, Dr. K. Nakamura (Anritsu Corp) for his previous work on the odor sensing system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamichi Nakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nakamoto, T. (2009). Prediction of Quartz Crystal Microbalance Gas Sensor Responses Using Grand Canonical Monte Carlo Method. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_4

Download citation

Publish with us

Policies and ethics