Skip to main content

Hybrid Arrays for Chemical Sensing

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial intelligence and robotics, all share the same essential data fusion challenges. The design of a hybrid sensor array should draw on this extended body of knowledge. In this chapter, various techniques for data preprocessing, feature extraction, feature selection, and modeling of sensor data will be introduced and illustrated with data fusion approaches that have been implemented in applications involving data from hybrid arrays. The example systems discussed in this chapter involve the development of prototype sensor networks for damage control event detection aboard US Navy vessels and the development of analysis algorithms to combine multiple sensing techniques for enhanced remote detection of unexploded ordnance (UXO) in both ground surveys and wide area assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stetter, J. R.; Jurs, P. C.; Rose, S. L., Detection of hazardous gases and vapors: Pattern recognition analysis of data from electrochemical sensor array, Anal. Chem. 1986, 58, 860–866

    Article  CAS  Google Scholar 

  2. Müller, R.; Lange, E. Multidimensional sensor for gas analysis, Sensors Actuat. 1986, 9, 39–48

    Article  Google Scholar 

  3. Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R., Cross-reactive chemical sensor arrays, Chem. Rev. 2000, 100, 2595–2626

    Article  CAS  Google Scholar 

  4. Jurs, P. C.; Bakken, G. A.; McClelland, H. E., Computational methods for the analysis of chemical sensor array data from volatile analytes, Chem. Rev. 2000, 100, 2649–2678

    Article  CAS  Google Scholar 

  5. Bourgeois, W.; Romain, A.; Nicolas, J.; Stuetz, R. M., The use of sensor arrays for environmental monitoring: interests and limitations, J. Environ. Monit. 2003, 5, 852–860

    Article  CAS  Google Scholar 

  6. Niessner, R., Chemical sensors for environmental analysis, TrAC 1991, 10, 310–316

    CAS  Google Scholar 

  7. Di Natale, C.; Macagnano, A.; Paolesse, R.; D'Amico, A., Artificial olfaction systems: Principles and applications to food analysis, Biotechnol. Agron. Soc. Environ. 2001, 5, 159–165

    Google Scholar 

  8. Deisingh, A. K.; Stone, D. C. Thompson, M., Applications of electronic noses and tongues in food analysis, Int. J. Food Sci. Technol. 2004, 39, 587–604

    Article  CAS  Google Scholar 

  9. Pavlou, A. K.; Turner, A. P., Sniffing out the truth: Clinical diagnosis using the electronic nose, Clin. Chem. Lab. Med. 2000, 38, 99–112

    Article  CAS  Google Scholar 

  10. Wilson, D. M.; Hoyt, S.; Janata, J.; Booksh, K.; Obando, L., Chemical sensors for portable, handheld field instruments, IEEE Sensors J. 2001, 1, 256–274

    Article  CAS  Google Scholar 

  11. Gardner, J. W.; Shurmer, H. V.; Corcoran, P., Integrated tin oxide odour sensors, Sensors Actuat. 1991, B4, 117–121

    Article  CAS  Google Scholar 

  12. Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T.; Allen, J. W., Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sensors Actuat. 2003, B93, 126–134

    Article  CAS  Google Scholar 

  13. Reinhoudt, D. N., Durable chemical sensors based on field-effect transistors, Sensors Actuat. 1995, B24–25, 197–200

    Article  Google Scholar 

  14. Ballantine, D. S., Jr.; Rose, S. L.; Grate, J. W.; Wohltjen, H., Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition, Anal. Chem. 1986, 58, 3058–3066

    Article  CAS  Google Scholar 

  15. Rose-Pehrsson, S. L.; Grate, J. W.; Ballantine, B. S., Jr.; Jurs, P. C., Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices, Anal. Chem. 1988, 60, 2801–2811

    Article  CAS  Google Scholar 

  16. Grate, J. W., Acoustic wave microsensor arrays for vapor sensing, Chem. Rev. 2000, 100, 2627–2648

    Article  CAS  Google Scholar 

  17. Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Wise, B. M., Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays, Anal. Chem. 1999, 71, 1033–1040

    Article  CAS  Google Scholar 

  18. Grate, J. W.; Rose-Pehrsson, S.; Barger, W. R., Langmuir-blodgett films of a nickel dithiolene complex on chemical microsensors for the detection of hydrazine, Langmuir 1988, 4, 1293–1301

    Article  CAS  Google Scholar 

  19. Bartlett, P. N.; Archer, P. B. M.; Ling-Chung, S. K., Conducting polymer gas sensors - Part 1: Fabrication and characterization, Sensors Actuat. 1989, 19, 125–140

    Article  CAS  Google Scholar 

  20. Bartlett, P. N; Ling-Chung, S. K, Conducting polymer gas sensors - Part II: Response of polypyrrole to methanol vapor, Sensors Actuat. 1989, 19, 141–150

    Article  CAS  Google Scholar 

  21. Shurmer, H. V.; Corcoran, P.; Gardner, J. W., Integrated arrays of gas sensors using conducting polymers with molecular sieves, Sensors Actuat. 1991, B4, 29–33

    Article  CAS  Google Scholar 

  22. Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J.; Jurs, P., Optical sensor arrays for odor recognition, Biosens. Bioelectron. 1998, 13, 697–699

    Article  CAS  Google Scholar 

  23. Persaud, K.; Dodd, G. H., Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose, Nature 1982, 299, 352–355

    Article  CAS  Google Scholar 

  24. Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R., Current trends in ‘artificial-nose’ technology, Trends Biotechnol. 1998, 16, 250–258

    Article  CAS  Google Scholar 

  25. Ziegler, C.; Gopel, W.; Hammerle, H.; Hatt, H.; Jung, G.; Laxhuber, L.; Schmidt, H. L.; Schutz, S.; Vogtle, F.; Zell, A., Bioelectronic noses: A status report. Part II, Biosens. Bioelectron. 1998, 13, 539–571

    Article  CAS  Google Scholar 

  26. Gardner, J. W.; Bartlett, P. N., Eds., Sensors and Sensory Systems for an Electronic Nose, Kluwer, Dordrecht, 1992

    Google Scholar 

  27. Gardner, J. W.; Bartlett, P. N., A brief history of electronic noses, Sensors Actuat. 1994, B18–19, 211–220

    Google Scholar 

  28. Strike, D. J.; Meijerink, M. G. H.; Koudelka-Hep, M., Electronic noses - A mini-review, Fresenius J. Anal. Chem. 1999, 364, 499–505

    Article  CAS  Google Scholar 

  29. Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D'Amico, A., Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids, (IUPAC Technical Report), Pure Appl. Chem. 2005, 77, 1965–1983

    Article  CAS  Google Scholar 

  30. Shurmer, H. V.; Corcoran, P.; James, M. K., Sensitivity enhancement for gas sensing and electronic nose applications, Sensors Actuat. 1993, B15–16, 256–259

    Article  Google Scholar 

  31. Göpel, W., New materials and transducers for chemical sensors, Sensors Actuat. 1994, B18–19, 1–21

    Article  Google Scholar 

  32. He, L.; Toh, C., Review: Recent advances in analytical chemistry - A material approach, Anal. Chim. Acta 2006, 556, 1–15

    Article  CAS  Google Scholar 

  33. Walmsley, A. D.; Haswell, S. J.; Metcalfe, E., Methodology for the selection of suitable sensors for incorporation into a gas sensor array, Anal. Chim. Acta 1991, 242, 31–36

    Article  CAS  Google Scholar 

  34. Guadarrama, A.; Fernández, J. A.; Iniguez, M.; Souto, J.; de Saja, J. A., Discrimination of wine aroma using an array of conducting polymer sensors in conjunction with solid-phase micro-extraction (SPME) technique, Sensors Actuat. 2001, B77, 401–408

    Article  CAS  Google Scholar 

  35. James, D.; Scott, S. M.; Ali, Z; O'Hare, W. T., Review: Chemical sensors for electronic nose systems, Microchim. Acta 2005, 149, 1–17

    Article  CAS  Google Scholar 

  36. Craven, M. A.; Gardner, J. W; Bartlett, P. N., Electronic noses - development and future prospects, TrAC 1996, 15, 486–493

    CAS  Google Scholar 

  37. Hall, D. L.; Llinas, J., An introduction to multisensor data fusion, Proc. IEEE 1997, 85, 6–23

    Article  Google Scholar 

  38. Winquist, F.; Hörnsten, E. G.; Sundgren, H.; Lundström, I., Performance of an electronic nose for quality estimation of ground meat, Meas. Sci. Technol. 1993, 4, 1493–1500

    Article  CAS  Google Scholar 

  39. Holmberg, M.; Winquist, F.; Lundström, I.; Gardner, J. W.; Hines, E. L., Identification of paper quality using a hybrid electronic nose, Sensors Actuat. 1995, B26–27, 246–249

    Article  Google Scholar 

  40. Börjesson, T.; Eklöv, T.; Jonsson, A.; Sundgren, H.; Schnürer, J., Electronic nose for odor classification of grains, Cereal Chem. 1996, 73, 457–461

    Google Scholar 

  41. Mandenius, C.-F.; Hagman, A.; Dunås, F.; Sundgren, H.; Lundström, I., A multisensor array for visualizing continuous state transitions in biopharmaceutical processes using principal component analysis, Biosens. Bioelectron. 1998, 13, 193

    Article  CAS  Google Scholar 

  42. Mandenius, C.-F.; Eklöv, T.; Lundström, I., Sensor fusion with on-line gas emission multisensor arrays and standard process measuring devices in baker's yeast manufacturing process, Biotechnol. Bioeng 1997, 55, 427–438

    Article  CAS  Google Scholar 

  43. Lidén, H.; Mandenius, C.-F.; Gorton, L.; Meinander, N. Q.; Lundström, I.; Winquist, F., On-line monitoring of a cultivation using an electronic nose, Anal. Chim. Acta 1998, 361, 223–231

    Article  Google Scholar 

  44. Holmberg, M.; Gustafsson, F.; Hörnsten, E. G.; Winquist, F.; Nilsson, L. E.; Ljung, L.; Lundström, I., Bacteria classification based on feature extraction from sensor data, Biotechnol. Tech. 1998, 12, 319–324

    Article  CAS  Google Scholar 

  45. Mitrovics, J.; Weimar, U.; Göpel, W., Linearisation in multicomponent analysis based on a hybrid sensor array with 19 sensor elements, Proc. Transducers '95 1995, 1, 25–29

    Google Scholar 

  46. Mitrovics, J.; Ulmer, H.; Weimar, U.; Göpel, W., Modular sensor systems for gas sensing and odor monitoring: The MOSES concept, Acc. Chem. Res. 1998, 31, 307–315

    Article  CAS  Google Scholar 

  47. Ulmer, H.; Mitrovics, J.; Noetzel, G.; Weimar, U.; Göpel, W., Odors and flavours identified with hybrid modular sensing systems, Sensors Actuat. 1997, B43, 24–33

    Article  CAS  Google Scholar 

  48. Sauter, D.; Weimar, U.; Noetzel, G.; Mitrovics, J.; Göpel, W., Development of modular ozone sensor system for application in practical use, Sensors Actuat. 2000, B69, 1–9

    Article  CAS  Google Scholar 

  49. Ulmer, H.; Mitrovics, J.; Weimar, U.; Göpel, W., Sensor arrays with only one or several transducer principles? The advantage of hybrid modular systems, Sensors Actuat. 2000, B65, 79–81

    Article  CAS  Google Scholar 

  50. Ulmer, H.; Mitrovics, J.; Weimar, U.; Göpel, W., Detection of off-odors using a hybrid modular sensor system, In Conference on Proceedings of Transducers '97, Chicago, USA, 555–558

    Google Scholar 

  51. Frank, M.; Ulmer, H; Ruiz, J.; Visani, P.; Weimar, U., Complementary analytical measurements based upon gas chromatography-mass spectrometry, sensor system and human sensory panel: a case study dealing with packaging materials, Anal. Chim. Acta 2001, 431, 11–29

    Article  CAS  Google Scholar 

  52. Pardo, M.; Kwong, L. G.; Sberveglieri, G.; Schneider, J.; Penrose, W. R.; Stetter, J. R., Detection of contraband food products with a hybrid chemical sensor system, Proc. IEEE Sensors 2003, 2, 1073–1076

    Google Scholar 

  53. Pardo, M.; Kwong, L. G.; Sberveglieri, G.; Brubaker, K.; Schneider, J. F.; Penrose, W. R.; Stetter, J. R., Data analysis for a hybrid sensor array, Sensors Actuat. 2005, B106, 136–143

    Article  CAS  Google Scholar 

  54. Benedetti, S.; Mannino, S.; Sabatini, A. G.; Marcazzan, G. L., Electronic nose and neural network use for the classification of honey, Apidologie 2004, 35, 397–402

    Article  Google Scholar 

  55. Morvan, M.; Talou, T.; Beziau, J.-F., MOS-MOSFET gas sensors array measurements versus sensory and chemical characterisation of VOC's emissions from car seat foams, Sensors Actuat. 2003, B95, 212–223

    Article  CAS  Google Scholar 

  56. Heilig, A.; Bârsan, N.; Weimar, U.; Schweizer-Berberich, M.; Gardner, J. W.; Göpel, W., Gas identification by modulating temperatures of SnO2-based thick film sensors, Sensors Actuat. 1997, B43, 45–51

    Article  CAS  Google Scholar 

  57. Sundgren, H.; Lundström, I.; Winquist, F.; Lukkari, I.; Carlsson, R.; Wold, S., Evaluation of a multiple gas mixture with a simple MOSFET gas sensor array and pattern recognition, Sensors Actuat. 1990, B2, 115–123

    Article  CAS  Google Scholar 

  58. Wilson, D. M.; Roppel, T.; Kalim, R., Aggregation of sensory input for robust performance in chemical sensing Microsystems, Sensors Actuat. 2000, B64, 107–117

    Article  CAS  Google Scholar 

  59. Corcoran, P.; Lowery, P.; Anglesea, J., Optimal configuration of a thermally cycled gas sensor array with neural network pattern recognition, Sensors Actuat. 1998, B48, 448–455

    Article  CAS  Google Scholar 

  60. Llobet, E.; Brezmes, J.; Vilanova, X.; Sueiras, J. E.; Correig, X., Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array, Sensors Actuat. 1997, B41, 13–21

    Article  CAS  Google Scholar 

  61. Wide, P., A human-knowledge-based sensor implemented in an intelligent fermentation-sensor system, Sensors Actuat. 1996, B32, 227–231

    Article  CAS  Google Scholar 

  62. Janata, J.; Josowicz, M.; Vanysek, P.; Devaney, D. M., Chemical sensors, Anal. Chem. 1998, 70, 179R–208R

    Article  CAS  Google Scholar 

  63. Zhou, R.; Hierlemann, A.; Weimar, U.; Göpel, W., Gravimetric, dielectric and calorimetric methods for the detection of organic solvent vapours using poly(ether urethane) coatings, Sensors Actuat. 1996, B34, 356–360

    Article  CAS  Google Scholar 

  64. Topart, P.; Josowicz, M., Transient effects in the interaction between polypyrrole and methanol vapor, J. Phys. Chem. 1992, 96, 8662–8666

    Article  CAS  Google Scholar 

  65. Haug, M.; Schierbaum, K. D.; Gauglitz, G.; Göpel, W., Chemical sensors based upon polysiloxanes: Comparison between optical, quartz microbalance, calorimetric, and capacitance sensors, Sensors Actuat. 1993, B11, 383–391

    Article  CAS  Google Scholar 

  66. Heilig, A.; Bârsan, N.; Weimar, U.; Göpel, W., Selectivity enhancement of SnO2 gas sensors: Simultaneous monitoring of resistances and temperatures, Sensors Actuat. 1999, B58, 302–309

    Article  CAS  Google Scholar 

  67. Kurzawski, P.; Hagleitner, C.; Hierlemann, A., Detection and discrimination capabilities of a multitransducer single-chip gas sensor system, Anal. Chem. 2006, 78, 6910–6920

    Article  CAS  Google Scholar 

  68. Langereis, G. R.; Olthuis, W.; Bergveld, P., Using a single structure for three sensor operations and two actuator operations, Sensors Actuat. 1998, B53, 197–203

    Article  CAS  Google Scholar 

  69. Poghossian, A.; Schultze, J. W.; Schöning, M. J., Multi-parameter detection of (bio-)chemical and physical quantities using an identical transducer principle, Sensors Actuat. 2003, B91, 83–91

    Article  CAS  Google Scholar 

  70. Poghossian, A.; Lüth, H.; Schultze, J. W.; Schöning, M. J., (Bio-)chemical and physical microsensor arrays using an identical transducer principle, Electrochim. Acta 2001, 47, 243–249

    Article  CAS  Google Scholar 

  71. Hall, D. L; Llinas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001

    Google Scholar 

  72. Hall, D. L; McMullen, S. A., Mathematical Techniques in Multisensor Data Fusion, 2nd edn.; Artech House, Inc., Norwood, MA, 2004

    Google Scholar 

  73. Klein, L. A., Sensor and Data Fusion: A Tool for Information Assessment and Decision Making, SPIE, Bellingham, WA, 2006

    Google Scholar 

  74. Naidu, P. S., Sensor Array Signal Processing, CRC, Boca Raton, FL, 2000

    Book  Google Scholar 

  75. Huyberechts, G.; Szecówka, P.; Roggen, J.; Licznerski, B. W., Simultaneous quantification of carbon monoxide and methane in humid air using a sensor array and an artificial neural network, Sensors Actuat. 1997, B45, 123–130

    Article  CAS  Google Scholar 

  76. Macagnano, A.; Careche, M.; Herrero, A.; Paolesse, R.; Martinelli, E.; Pennazza, G.; Carmona, P.; D'Amico, A.; Di Natale, C., A model to predict fish quality from instrumental features, Sensors Actuat 2005, B111–112, 293–298

    Article  CAS  Google Scholar 

  77. Mandenius, C.-F.; Lidén, H.; Eklöv, T.; Taherzadeh, M. J.; Lidén G., Predicting fermentability of wood hydrolyzates with responses from electronic noses, Biotechnol. Prog. 1999, 15, 617–621

    Article  CAS  Google Scholar 

  78. Di Natale, C.; Macagnano, A.; Nardis, S.; Paolesse, R.; Falconi, C.; Proietti, E.; Siciliano, P.; Rella, R.; Taurino, A.; D'Amico, A., Comparison and integration of arrays of quartz resonators and metal-oxide semiconductor chemoresistors in the quality evaluation of olive oils, Sensors Actuat. 2001, B78, 303–309

    Article  Google Scholar 

  79. Boilot, P.; Hines, E. L.; Gongora, M. A.; Folland, R. S., Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions, Sensors Actuat. 2003, B88, 80–88

    Article  CAS  Google Scholar 

  80. Winquist, F.; Wide, P.; Lundström, I., The combination of an electronic tongue and an electronic nose for improved classification of fruit juices, In Technical Digest of Eurosensors XII Conference, Southampton, UK, IOP, Bristol, 1998

    Google Scholar 

  81. Wide, P.; Winquist, F.; Bergsten, P.; Petriu, E. M., The human-based multisensor fusion method for artificial nose and tongue sensor data, IEEE Trans. Instrum. Measure. 1998, 47, 531–536

    Article  Google Scholar 

  82. Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; D'Amico, A.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y., Electronic nose and electronic tongue integration for improved classification of clinical and food samples, Sensors Actuat. 2000, B64, 15–21

    Article  Google Scholar 

  83. Rong, L.; Ping, W.; Wenlei, H., A novel method for wine analysis based on sensor fusion technique, Sensors Actuat. 2000, B66, 246–250

    Article  CAS  Google Scholar 

  84. Luo, R. C.; Yih, C. C.; Su, K. L., Multisensor fusion and integration: Approaches, applications, and future research directions, IEEE Sensors J. 2002, 2, 107–119

    Article  Google Scholar 

  85. Hammond, M. H.; Johnson, K. J.; Rose-Pehrsson, S. L.; Ziegler, J.; Walker, H.; Caudy, K.; Gary, D.; Tillett, D., A novel chemical detector using cermet sensors and pattern recognition methods for toxic industrial chemicals, Sensors Actuat. 2006, B116, 135–144

    Article  CAS  Google Scholar 

  86. Hart, S. J.; Shaffer, R. E.; Rose-Pehrsson, S. L.; McDonald, J. R., Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (uxo) classification in magnetometry surveys, IEEE Trans. Geosci. Remote Sensing 2001, 39, 797–804

    Article  Google Scholar 

  87. Bernstein, D. S., The end of false alarms?” National Fire Protection Association Magazine, Jan/Feb 1998

    Google Scholar 

  88. Pfister, G., Multisensor/multicriteria fire detection: A new trend rapidly becomes state of the art, Fire Technol. 1997, 33, 115–139

    Article  Google Scholar 

  89. Jackson, M. A.; Robins, I., Gas sensing for fire detection: Measurements of CO, CO2, H2, O2 and smoke density in European standard fire tests, Fire Safety J. 1994, 23, 181–205

    Article  Google Scholar 

  90. Milke, J. A., Monitoring multiple aspects of fire signatures for discriminating fire detection, Fire Technol. 1999, 35, 195–209

    Article  Google Scholar 

  91. Milke, J. A.; Hulcher, M. E.; Worrel, C. L.; Gottuk, D. T.; Williams, F. W., Investigation of multi-sensor algorithms for fire detection, Fire Technol. 2003, 39, 363–382

    Article  Google Scholar 

  92. Gottuk, D. T.; Hill, S. A.; Schemel, C. F.; Strehlen, B. D.; Rose-Pehrsson, S. L.; Shaffer, R. E.; Tatem, P. A.; Williams, F. A., Identification of fire signatures for shipboard mulit-criteria fire detection systems, In NRL Memorandum Report NRL/MR/6180–99–8386, June 18, 1999

    Google Scholar 

  93. Rose-Pehrsson, S. L.; Shaffer, R. E.; Hart, S. J.; Williams, F. W.; Gottuk, D. T.; Strehlen, B. D.; Hill, S. A., Multi-criteria fire detection systems using a probabilistic neural network, Sensors Actuat. 2000, B69, 325–335

    Article  CAS  Google Scholar 

  94. Shaffer, R. E.; Rose-Pehrsson, S. L., Improved probabilistic neural network algorithm for chemical sensor array pattern recognition, Anal. Chem. 1999, 71, 4263–4271

    Article  CAS  Google Scholar 

  95. Hammond, M. H.; Riedel, J. C.; Rose-Pehrsson, S. L.; Williams, F. W., Training set optimization methods for a probabilistic neural network, Chemom. Intell. Lab. Syst. 2004, 71, 73–78

    Article  CAS  Google Scholar 

  96. Hart, S. J.; Hammond, M. H.; Wong, J. T.; Wright, M. T.; Gottuk, D. T.; Rose-Pehrsson, S. L.; Williams, F. W., Real-time classification performance and failure mode analysis of a physical/chemical sensor array and probabilistic neural network, Field Anal. Chem. Technol. 2001, 5, 244–258

    Article  CAS  Google Scholar 

  97. Rose-Pehrsson, S. L.; Hart, S. J.; Street, T. T.; Williams, F. W.; Hammond, M. H.; Gottuk, D. T.; Wright, M. T.; Wong, J. T., Early warning fire detection system using a probabilistic neural network, Fire Technol. 2003, 39, 147–171

    Article  Google Scholar 

  98. JiJi, R. D.; Hammond, M. A.; Williams, F. W.; Rose-Pehrsson, S. L., Multivariate statistical process control for continuous monitoring of networked early warning fire detection (EWFD) systems, Sensors Actuat. 2003, B93, 107–116

    Article  CAS  Google Scholar 

  99. Rose-Pehrsson, S. L.; Owrutsky, J. C.; Gottuk, D. T.; Geiman, J. A.; Williams, F. W.; Farley, J. P., Phase I: FY01 investigative study for the advanced volume sensor, In NRL Memorandum Report NRL/MR/6110–03–8688, June 30, 2003

    Google Scholar 

  100. Gottuk, D. T.; Lynch, J. A.; Rose-Pehrsson, S. L.; Owrutsky, J. C.; Williams, F. W., Video image fire detection for shipboard use, Fire Safety J. 2006, 41, 321–326

    Article  Google Scholar 

  101. Owrutsky, J. C.; Steinhurst, D. A.; Nelson, H. H.; Williams, F. W., Spectral based volume sensor component, In NRL Memorandum Report NRL/MR/6110–03–8694, July 30, 2003

    Google Scholar 

  102. Steinhurst, D. A.; Lynch, J. A.; Gottuk, D. T.; Owrutsky, J. C.; Nelson, H. H.; Rose-Pehrsson, S. L.; Williams, F. W., Spectral-based volume sensor testbed algorithm development, test series VS2, In NRL Memorandum Report NRL/MR/6110–05–8856, January 12, 2005

    Google Scholar 

  103. Wales, S. C.; McCord, M. T.; Lynch, J. A.; Rose-Pehrsson, S. L.; Williams, F. W., Acoustic event signatures for damage control: Water events and shipboard ambient noise, In NRL Memorandum Report NRL/MR/7120–04–8445, October 12, 2004

    Google Scholar 

  104. Steinhurst, D. A.; Minor, C. P.; Owrutsky, J. C.; Rose-Pehrsson, S. L. Gottuk, D. T.; Williams, F. W., Long wavelength video-based event detection, preliminary results from the CVNX and VS1 test series, ex-USS SHADWELL, April 7–25, 2003, In NRL Memorandum Report NRL/MR/6110–03–8733, December 31, 2003

    Google Scholar 

  105. Owrutsky, J. C.; Steinhurst, D. A.; Minor, C. P.; Rose-Pehrsson, S. L.; Gottuk, D. T.; Williams, F. W., Long wavelength video detection of fire in ship compartments, Fire Safety J. 2006, 41, 315–320

    Article  Google Scholar 

  106. Rose-Pehrsson, S. L.; Minor, C. P.; Steinhurst, D. A.; Owrutsky, J. C.; Lynch, J. A.; Gottuk, D. T.; Wales, S. C.; Farley, J. P.; Williams, F. W., Volume sensor for damage assessment and situational awareness Fire Safety J. 2006, 41, 301–310

    Article  Google Scholar 

  107. James, P. S., Bayesian Statistics: Principles, Models, and Applications, Wiley, New York, 1989

    Google Scholar 

  108. Roussel, S.; Bellon-Maurel, V.; Roger, J.-M.; Grenier, P., Fusion of aroma, FT-IR and UV sensor data based on Bayesian inference. Application to the discrimination of white grape varieties, Chemom. Intell. Lab. Syst. 2003, 65, 209–219

    Article  CAS  Google Scholar 

  109. Minor, C. P.; Johnson, K. J.; Rose-Pehrsson, S. L; Owrutsky, J. C.; Wales, S. C.; Steinhurst, D. A.; Gottuk, D. T., A full-scale prototype multisensor system for damage control and situational awareness, Fire Technol., in press

    Google Scholar 

  110. Lynch, J. A.; Gottuk, D. T.; Owrutsky, J. C.; Steinhurst, D. A.; Minor, C. P.; Wales, S. C.; Farley, J. P.; Rose-Pehrsson, S. L; Williams, F. W., Volume sensor development test series 5 – Multi-compartment system, In NRL Memorandum Report NRL/MR/6180–05–8931, December 30, 2005

    Google Scholar 

  111. Collins, L. M.; Zhang, Y.; Li, J.; Wang, H.; Carin, L.; Hart, S. J.; Rose-Pehrsson, S. L.; Nelson, H. H.; McDonald, H. H., A comparison of the performance of statistical and fuzzy algorithms for unexploded ordnance detection, IEEE Trans. Fuzzy Systems 2001, 9, 17–30

    Article  Google Scholar 

  112. Barrow, B.; Nelson, H. H., Model-based characterization of electromagnetic induction signatures obtained with the MTADS electromagnetic array, IEEE Trans. Geosci. Remote Sensing 2001, 39, 1279–1285

    Article  Google Scholar 

  113. Nelson, H. H.; McDonald, J. R., Multisensor towed array detection system for UXOdetection, IEEE Trans. Geosci. Remote Sensing 2001, 39, 1139–1145

    Article  Google Scholar 

  114. Rose-Pehrsson, S. L.; Johnson, K. J.; Minor, C. P., Intelligent data fusion for wide-area assessment of UXO contamination. SERDP Project MM-1510. FY06 Annual Report, In NRL Memorandum Report NRL/MR/6181–07–9039, April 20, 2007

    Google Scholar 

Download references

Acknowledgments

The Office of Naval Research provided funding for the Early Warning Fire Detector and the Volume Sensor. Funding for the UXO research was provided by the Strategic Environmental Research and Development Program (SERDP). Dr. Kirsten Kramer is a Post-Doctoral Fellow with the National Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten E. Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kramer, K.E., Rose-Pehrsson, S.L., Johnson, K.J., Minor, C.P. (2009). Hybrid Arrays for Chemical Sensing. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_12

Download citation

Publish with us

Policies and ethics