Skip to main content

A Statistical Approach to Materials Evaluation and Selection for Chemical Sensor Arrays

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

We present a generic approach for designing sensor arrays for a given chemical sensing task. First, we present a correlation-based metric to systematically assess the analytical information obtained from the conductometric responses of chemiresistive films as a function of their operating temperatures and material composition. We illustrate how this measure can also be used to test the reproducibility of signals obtained from sensors of equal manufacture. Next, complementing the correlation-based analysis, we employ a statistical dimensionality-reduction algorithm to visualize the multivariate sensor response obtained from sensor arrays. We adapt this method to quantify the discriminability of chemical fingerprints. Finally, we show how to determine an optimal set of material compositions to be incorporated within an array for individual species' recognition when practical constraints/tradeoffs on fabrication are also considered. We validate our approach by designing a microsensor array for the task of recognizing a chemical hazard at sub-lethal concentrations in complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mention of these and any other commercial products is strictly for provision of proper experimental definition, and does not constitute an endorsement by the National Institute of Standards and Technology

    Google Scholar 

  2. Hierlemann, A.; Gutierrez-Osuna, R., Higher-order chemical sensing, Chem. Rev. 2008, 108, 563–613

    Article  CAS  Google Scholar 

  3. Pearce, T. C.; Sanchez-Montanes, M., Chemical sensor array optimization: geometric and information theoretic approaches, In Handbook of Machine Olfaction: Electronic Nose Technology; Pearce, T. C.; Schiffman, S. S.; Nagle, H. T.; Gardner, J. W., Eds. Wiley-VCH, Weinheim, 2002, 347–376.

    Chapter  Google Scholar 

  4. Wilson, D.; Garrod, S.; Hoyt, S.; McKennoch, S.; Booksh, K. S., Array optimization and preprocessing techniques for chemical sensing microsystems, Sens. Update 2002, 10, 77–106

    Article  CAS  Google Scholar 

  5. Semancik, S.; Cavicchi, R. E.; Wheeler, M. C.; Tiffany, J. E.; Poirier, G. E.; Walton, R. M.; Suehle, J. S.; Panchapakesan, B.; Devoe, D. L., Microhotplate platforms for chemical sensor research, Sens. Actuators B 2001, 77, 579–591

    Article  Google Scholar 

  6. Semancik, S.; Cavicchi, R., Kinetically controlled chemical sensing using micromachined structures, Acc. Chem. Res. 1998, 31, 279–287

    Article  CAS  Google Scholar 

  7. Cavicchi, R. E.; Suehle, J. S.; Kreider, K. G.; Gaitan, M.; Chaparala, P., Fast temperature programmed sensing for micro-hotplate gas sensors, IEEE Electron Device Lett. 1995, 16, 286–288

    Article  CAS  Google Scholar 

  8. Batzill, M.; Diebold, U., The surface and materials science of tin oxide, Sens. Actuators B 1997, 43, 45–51

    Article  Google Scholar 

  9. Martinez, C. J.; Hockey, B.; Montgomery, C. B.; Semancik, S., Porous tin oxide nanostructured microspherers for sensor applications, Langmuir 2005, 21, 7937–7944

    Article  CAS  Google Scholar 

  10. Raman, B.; Hertz, J.; Benkstein, K.; Semancik, S., A bioinspired methodology for artificial olfaction, Anal. Chem. 2008, 80, 8364–8371

    Article  CAS  Google Scholar 

  11. Meier, D. C.; Taylor, C. J.; Cavicchi, R. E.; White, E.; Semancik, S.; Ellzy, M. W.; Sumpter, K. B., Chemical warfare agent detection using MEMS-compatible microsensor arrays, IEEE Sens. J. 2005, 5, 712–725

    Article  CAS  Google Scholar 

  12. Bârsan, N.; Weimar, U., Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, J. Phys. Condens Matter 2003, 15, R813–R819

    Article  Google Scholar 

  13. Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T., Detection of chemical warfare agents using nanostructured metal-oxide sensors, Sens. Actuators B 2005, 108, 41–55

    Article  Google Scholar 

  14. Vaid, T. P.; Burl, M. C.; Lewis, N. S., Comparison of the performance of different discriminant algorithms in analyte discrimination tasks using an array of carbon black-polymer composite vapor detectors, Anal. Chem. 2001, 73, 321–331

    Article  CAS  Google Scholar 

  15. Albert, K. J.; Lewis, N.; Schauer, C.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R., Cross-reactive chemical sensor arrays, Chem. Rev. 2000, 100, 2595–2626

    Article  CAS  Google Scholar 

  16. Ding, J.; McAvoy, T. J.; Cavicchi, R. E.; Semancik, S., Surface state trapping models for SnO2-based microhotplate sensors, Sens. Actuators B 2001, 77, 597–613

    Article  Google Scholar 

  17. Gaggiotti, G.; Galdikas, A.; Kačiulis, S.; Mattogno, G.; Šetkus, A., Temperature dependencies of sensitivity and surface chemical composition of SnO x gas sensors, Sens. Actuators B 1995, 24–25, 516–519

    Article  Google Scholar 

  18. White, N.; Turner, J., Thick-film sensors: Past, present and future, Meas. Sci. Technol. 1997, 8, 1–20

    Article  CAS  Google Scholar 

  19. Panchapekesan, B.; Cavicchi, R.; Semancik, S.; DeVoe, D. L., Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates, Nanotechnology 2006, 17, 415–425

    Article  Google Scholar 

  20. Meier, D. C.; Semancik, S., Effects of Materials Chemistry on Conductometric Sensor Signals. In 2005 Materials Research Society Meeting Boston, 2005

    Google Scholar 

  21. Raman, B.; Meier, D.; Evju, J.; Semancik, S., Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments, Sens. Actuators B 2009, 137, 617–629

    Article  Google Scholar 

  22. Duda, R. O.; Hart, P. E.; Stork, D. G., Pattern Classification, 2nd edn.; Wiley-Interscience, New York, 2000, 115–121

    Google Scholar 

Download references

Acknowledgments

We acknowledge partial financial support of this project by the U.S. Department of Homeland Security, Science and Technology Directorate. BR was supported by a NIH(NIBIB)-NIST Joint Postdoctoral Associateship Award administered through the National Research Council. We thank Kurt Benkstein, Mike Carrier, Steve Fick, Jim Melvin, Wyatt Miller, Chip Montgomery, Casey Mungle, Jim Yost, Blaine Young, and Li Zhang for their valuable contributions to this project. We are grateful to Mark Stopfer for his helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Semancik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Raman, B., Meier, D.C., Semancik, S. (2009). A Statistical Approach to Materials Evaluation and Selection for Chemical Sensor Arrays. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_10

Download citation

Publish with us

Policies and ethics