Skip to main content

Combinatorial Libraries of Arrayable Single-Chain Antibodies

  • Chapter
  • 963 Accesses

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Antibodies that bind their respective targets with high affinity and specificity have proven to be essential reagents for biological research. Antibody phage display has become the leading tool for the rapid isolation of single-chain variable fragment (scFv) antibodies in vitro for research applications, but there is usually a gap between scFv isolation and its application in an array format suitable for high-throughput proteomics. In this chapter, we present our antibody phage display system where antibody isolation and scFv immobilization are facilitated by the design of the phagemid vector used as platform. In our system, the scFvs are fused at their C-termini to a cellulose-binding domain (CBD) and can be immobilized onto cellulose-based filters. This made it possible to develop a unique filter lift screen that allowed the efficient screen for multiple binding specificities, and to directly apply library-derived scFvs in an antibody spotted microarray.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hale, G., Therapeutic antibodies-delivering the promise? Adv. Drug Deliv. Rev. 2006, 58, 633–639

    Article  CAS  Google Scholar 

  2. Baker, M., Upping the ante on antibodies, Nat. Biotechnol. 2005, 23, 1065–1072

    Article  CAS  Google Scholar 

  3. Wingren, C.; Borrebaeck, C. A., High-throughput proteomics using antibody microarrays, Expert Rev. Proteomics 2004, 1, 355–364

    Article  CAS  Google Scholar 

  4. Hoogenboom, H. R., Selecting and screening recombinant antibody libraries, Nat. Biotechnol. 2005, 23, 1105–1116

    Article  CAS  Google Scholar 

  5. Bradbury, A. R.; Velappan, N.; Verzillo, V.; Ovecka, M.; Marzari, R.; Sblattero, D.; Chasteen, L.; Siegel, R.; Pavlik, P., Antibodies in proteomics, Methods Mol. Biol. 2004, 248, 519–546

    CAS  Google Scholar 

  6. DeRisi, J. L.; Iyer, V. R.; Brown, P. O., Exploring the metabolic and genetic control of gene expression on a genomic scale, Science 1997, 278, 680–686

    Article  CAS  Google Scholar 

  7. Anderson, L.; Seilhamer, J., A comparison of selected mrna and protein abundances in human liver, Electrophoresis 1997, 18, 533–537

    Article  CAS  Google Scholar 

  8. Gygi, S. P.; Rochon, Y.; Franza, B. R.; Aebersold, R., Correlation between protein and mRNA abundance in yeast, Mol. Cell Biol. 1999, 19, 1720–1730

    CAS  Google Scholar 

  9. Martzen, M. R.; McCraith, S. M.; Spinelli, S. L.; Torres, F. M.; Fields, S.; Grayhack, E. J.; Phizicky, E. M., A biochemical genomics approach for identifying genes by the activity of their products, Science 1999, 286, 1153–1155

    Article  CAS  Google Scholar 

  10. Ross-Macdonald, P.; Coelho, P. S.; Roemer, T.; Agarwal, S.; Kumar, A.; Jansen, R.; Cheung, K. H.; Sheehan, A.; Symoniatis, D.; Umansky, L.; Heidtman, M.; Nelson, F. K.; Iwasaki, H.; Hager, K.; Gerstein, M.; Miller, P.; Roeder, G. S.; Snyder, M., Large-scale analysis of the yeast genome by transposon tagging and gene disruption, Nature 1999, 402, 413–418

    Article  CAS  Google Scholar 

  11. Carr, K. M.; Rosenblatt, K.; Petricoin, E. F.; Liotta, L. A., Genomic and proteomic approaches for studying human cancer: Prospects for true patient-tailored therapy, Hum. Genomics 2004, 1, 134–140

    CAS  Google Scholar 

  12. McCafferty, J.; Griffiths, A. D.; Winter, G.; Chiswell, D. J., Phage antibodies: Filamentous phage displaying antibody variable domains, Nature 1990, 348, 552–554

    Article  CAS  Google Scholar 

  13. Marks, J. D.; Hoogenboom, H. R.; Bonnert, T. P.; McCafferty, J.; Griffiths, A. D.; Winter, G., By-passing immunization. Human antibodies from v-gene libraries displayed on phage, J. Mol. Biol. 1991, 222, 581–597

    Article  CAS  Google Scholar 

  14. Barbas, C. F. d., Recent advances in phage display, Curr. Opin. Biotechnol. 1993, 4, 526–530

    Article  CAS  Google Scholar 

  15. Benhar, I., Biotechnological applications of phage and cell display, Biotechnol. Adv. 2001, 19, 1–33

    Article  CAS  Google Scholar 

  16. Bird, R. E.; Hardman, K. D.; Jacobson, J. W.; Johnson, S.; Kaufman, B. M.; Lee, S. M.; Lee, T.; Pope, S. H.; Riordan, G. S.; Whitlow, M., Single-chain antigen-binding proteins, Science 1988, 242, 423–426

    Article  CAS  Google Scholar 

  17. Huston, J. S.; Levinson, D.; Mudgett-Hunter, M.; Tai, M. S.; Novotny, J.; Margolies, M. N.; Ridge, R. J.; Bruccoleri, R. E.; Haber, E.; Crea, R.; et al., Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain fv analogue produced in Escherichia coli, Proc. Natl. Acad. Sci. (USA) 1988, 85, 5879–5883

    Article  CAS  Google Scholar 

  18. Vaughan, T. J.; Williams, A. J.; Pritchard, K.; Osbourn, J. K.; Pope, A. R.; Earnshaw, J. C.; McCafferty, J.; Hodits, R. A.; Wilton, J.; Johnson, K. S., Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library, Nat. Biotechnol. 1996, 14, 309–314

    Article  CAS  Google Scholar 

  19. de Haard, H. J.; van Neer, N.; Reurs, A.; Hufton, S. E.; Roovers, R. C.; Henderikx, P.; de Bruine, A. P.; Arends, J. W.; Hoogenboom, H. R., A large non-immunized human fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies, J. Biol. Chem. 1999, 274, 18218–18230

    Article  Google Scholar 

  20. Knappik, A.; Ge, L.; Honegger, A.; Pack, P.; Fischer, M.; Wellnhofer, G.; Hoess, A.; Wolle, J.; Plückthun, A.; Virnekas, B., Fully synthetic human combinatorial antibody libraries (hucal) based on modular consensus frameworks and cdrs randomized with trinucleotides, J. Mol. Biol. 2000, 296, 57–86

    Article  CAS  Google Scholar 

  21. Soderlind, E.; Strandberg, L.; Jirholt, P.; Kobayashi, N.; Alexeiva, V.; Aberg, A. M.; Nilsson, A.; Jansson, B.; Ohlin, M.; Wingren, C.; Danielsson, L.; Carlsson, R.; Borrebaeck, C. A., Recombining germline-derived cdr sequences for creating diverse single-framework antibody libraries, Nat. Biotechnol. 2000, 18, 852–856

    Article  CAS  Google Scholar 

  22. Azriel-Rosenfeld, R.; Valensi, M.; Benhar, I., A human synthetic combinatorial library of arrayable single-chain antibodies based on shuffling in vivo formed cdrs into general framework regions, J. Mol. Biol. 2004, 335, 177–192

    Article  CAS  Google Scholar 

  23. Coomber, D. W., Panning of antibody phage-display libraries. Standard protocols, Methods Mol. Biol. 2002, 178, 133–145

    CAS  Google Scholar 

  24. Barbas, C. F.; Burton, D. R.; Scott, J. K.; Silverman, G. J., Phage display: A laboratory manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2001, pp 736

    Google Scholar 

  25. Holt, L. J.; Bussow, K.; Walter, G.; Tomlinson, I. M., By-passing selection: Direct screening for antibody-antigen interactions using protein arrays, Nucleic Acids Res. 2000, 28, E72

    Article  CAS  Google Scholar 

  26. Radosevic, K.; Voerman, J. S.; Hemmes, A.; Muskens, F.; Speleman, L.; de Weers, M.; Rosmalen, J. G.; Knegt, P.; van Ewijk, W., Colony lift assay using cell-coated filters: A fast and efficient method to screen phage libraries for cell-binding clones, J. Immunol. Methods 2003, 272, 219–233

    Article  CAS  Google Scholar 

  27. Watkins, J. D.; Beuerlein, G.; Wu, H.; McFadden, P. R.; Pancook, J. D.; Huse, W. D., Discovery of human antibodies to cell surface antigens by capture lift screening of phage-expressed antibody libraries, Anal. Biochem. 1998, 256, 169–177

    Article  CAS  Google Scholar 

  28. Wingren, C.; Steinhauer, C.; Ingvarsson, J.; Persson, E.; Larsson, K.; Borrebaeck, C. A., Microarrays based on affinity-tagged single-chain fv antibodies: Sensitive detection of analyte in complex proteomes, Proteomics 2005, 5, 1281–1291

    Article  CAS  Google Scholar 

  29. Kwon, Y.; Han, Z.; Karatan, E.; Mrksich, M.; Kay, B. K., Antibody arrays prepared by cutinase-mediated immobilization on self-assembled monolayers, Anal. Chem. 2004, 76, 5713–5720

    Article  CAS  Google Scholar 

  30. Rodenburg, C. M.; Mernaugh, R.; Bilbao, G.; Khazaeli, M. B., Production of a single chain anti-cea antibody from the hybridoma cell line t84.66 using a modified colony-lift selection procedure to detect antigen-positive scfv bacterial clones, Hybridoma 1998, 17, 1–8

    Article  CAS  Google Scholar 

  31. de Wildt, R. M.; Mundy, C. R.; Gorick, B. D.; Tomlinson, I. M., Antibody arrays for high-throughput screening of antibody-antigen interactions, Nat. Biotechnol. 2000, 18, 989–994

    Article  Google Scholar 

  32. Giovannoni, L.; Viti, F.; Zardi, L.; Neri, D., Isolation of anti-angiogenesis antibodies from a large combinatorial repertoire by colony filter screening, Nucleic Acids Res. 2001, 29, E27

    Article  CAS  Google Scholar 

  33. Skerra, A.; Dreher, M. L.; Winter, G., Filter screening of antibody fab fragments secreted from individual bacterial colonies: Specific detection of antigen binding with a two-membrane system, Anal. Biochem. 1991, 196, 151–155

    Article  CAS  Google Scholar 

  34. Berdichevsky, Y.; Ben-Zeev, E.; Lamed, R.; Benhar, I., Phage display of a cellulose binding domain from clostridium thermocellum and its application as a tool for antibody engineering, J. Immunol. Methods 1999, 228, 151–162

    Article  CAS  Google Scholar 

  35. Hayashi, N.; Kipriyanov, S.; Fuchs, P.; Welschof, M.; Dorsam, H.; Little, M., A single expression system for the display, purification and conjugation of single-chain antibodies, Gene 1995, 160, 129–130

    Article  CAS  Google Scholar 

  36. Berdichevsky, Y.; Lamed, R.; Frenkel, D.; Gophna, U.; Bayer, E. A.; Yaron, S.; Shoham, Y.; Benhar, I., Matrix-assisted refolding of single-chain fv- cellulose binding domain fusion proteins, Protein Expr. Purif. 1999, 17, 249–259

    Article  CAS  Google Scholar 

  37. Ofir, K.; Berdichevsky, Y.; Benhar, I.; Azriel-Rosenfeld, R.; Lamed, R.; Barak, Y.; Bayer, E. A.; Morag, E., Versatile protein microarray based on carbohydrate-binding modules, Proteomics 2005, 5, 1806–1814

    Article  CAS  Google Scholar 

  38. Maynard, J.; Georgiou, G., Antibody engineering, Annu. Rev. Biomed. Eng. 2000, 2, 339–376

    Article  CAS  Google Scholar 

  39. Jiang, X.; Suzuki, H.; Hanai, Y.; Wada, F.; Hitomi, K.; Yamane, T.; Nakano, H., A novel strategy for generation of monoclonal antibodies from single b cells using rt-pcr technique and in vitro expression, Biotechnol. Prog. 2006, 22, 979–988

    Article  CAS  Google Scholar 

  40. Coronella, J. A.; Telleman, P.; Truong, T. D.; Ylera, F.; Junghans, R. P., Amplification of igg vh and vl (fab) from single human plasma cells and b cells, Nucleic Acids Res. 2000, 28, E85

    Article  CAS  Google Scholar 

  41. Wang, X.; Stollar, B. D., Human immunoglobulin variable region gene analysis by single cell RT-PCR, J. Immunol. Methods 2000, 244, 217–225

    Article  CAS  Google Scholar 

  42. Nissim, A.; Hoogenboom, H. R.; Tomlinson, I. M.; Flynn, G.; Midgley, C.; Lane, D.; Winter, G., Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents, Embo J. 1994, 13, 692–698

    CAS  Google Scholar 

  43. Jirholt, P.; Ohlin, M.; Borrebaeck, C. A. K.; Soderlind, E., Exploiting sequence space: Shuffling in vivo formed complementarity determining regions into a master framework, Gene 1998, 215, 471–476

    Article  CAS  Google Scholar 

  44. Borrebaeck, C. A.; Ohlin, M., Antibody evolution beyond nature, Nat. Biotechnol. 2002, 20, 1189–1190

    Article  CAS  Google Scholar 

  45. Carlsson, R.; Soderlind, E., N-coder concept: Unique types of antibodies for diagnostic use and therapy, Expert Rev. Mol. Diagn. 2001, 1, 102–108

    Article  CAS  Google Scholar 

  46. Rothlisberger, D.; Pos, K. M.; Plückthun, A., An antibody library for stabilizing and crystallizing membrane proteins – selecting binders to the citrate carrier cits, FEBS Lett. 2004, 564, 340–348

    Article  CAS  Google Scholar 

  47. Tomlinson, I. M.; Walter, G.; Marks, J. D.; Llewelyn, M. B.; Winter, G., The repertoire of human germline vh sequences reveals about fifty groups of vh segments with different hypervariable loops, J. Mol. Biol. 1992, 227, 776–798

    Article  CAS  Google Scholar 

  48. Pini, A.; Viti, F.; Santucci, A.; Carnemolla, B.; Zardi, L.; Neri, P.; Neri, D., Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel, J. Biol. Chem. 1998, 273, 21769–21776.

    Article  CAS  Google Scholar 

  49. Kobayashi, N.; Soderlind, E.; Borrebaeck, C. A., Analysis of assembly of synthetic antibody fragments: Expression of functional scfv with predefined specificity, Biotechniques 1997, 23, 500–503

    CAS  Google Scholar 

  50. Cox, J. P.; Tomlinson, I. M.; Winter, G., A directory of human germ-line v kappa segments reveals a strong bias in their usage, Eur. J. Immunol. 1994, 24, 827–836

    Article  CAS  Google Scholar 

  51. Griffiths, A. D.; Williams, S. C.; Hartley, O.; Tomlinson, I. M.; Waterhouse, P.; Crosby, W. L.; Kontermann, R. E.; Jones, P. T.; Low, N. M.; Allison, T. J.; et al., Isolation of high affinity human antibodies directly from large synthetic repertoires, Embo J. 1994, 13, 3245–3260

    CAS  Google Scholar 

  52. Ohlin, M.; Borrebaeck, C. A., Characteristics of human antibody repertoires following active immune responses in vivo, Mol. Immunol. 1996, 33, 583–592

    Article  CAS  Google Scholar 

  53. Huang, S. C.; Jiang, R.; Glas, A. M.; Milner, E. C., Non-stochastic utilization of ig v region genes in unselected human peripheral b cells, Mol. Immunol. 1996, 33, 553–560

    Article  CAS  Google Scholar 

  54. Benhar, I.; Tamarkin, A.; Marash, L.; Berdichevsky, Y.; Yaron, S.; Shoham, Y.; Lamed, R.; Bayer, E. A., Phage display of cellulose binding domains for biotechnological application, In Glycosyl hydrolases for biomass conversion; M. E. Himmel; J. O. Baker and J. N. Saddler, Ed.; American Chemical Society: Washington, DC, 2001; Vol. 769; 168–189

    Google Scholar 

  55. Benhar, I.; Reiter, Y., Phage display of single-chain antibodies (scfvs), In Current protocols in immunology; J. E. Coligan. Ed.; Wiley, New York, NY, 2002; 10.19B.11–10.19B.39

    Google Scholar 

  56. Feldhaus, M. J.; Siegel, R. W.; Opresko, L. K.; Coleman, J. R.; Feldhaus, J. M.; Yeung, Y. A.; Cochran, J. R.; Heinzelman, P.; Colby, D.; Swers, J.; Graff, C.; Wiley, H. S.; Wittrup, K. D., Flow-cytometric isolation of human antibodies from a nonimmune saccharomyces cerevisiae surface display library, Nat. Biotechnol. 2003, 21, 163–170

    Article  CAS  Google Scholar 

  57. Sheets, M. D.; Amersdorfer, P.; Finnern, R.; Sargent, P.; Lindqvist, E.; Schier, R.; Hemingsen, G.; Wong, C.; Gerhart, J. C.; Marks, J. D., Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens, Proc Natl Acad Sci U S A 1998, 95, 6157–6162

    Article  CAS  Google Scholar 

  58. Steukers, M.; Schaus, J. M.; van Gool, R.; Hoyoux, A.; Richalet, P.; Sexton, D. J.; Nixon, A. E.; Vanhove, M., Rapid kinetic-based screening of human fab fragments, J. Immunol. Methods 2006, 310, 126–135

    Article  CAS  Google Scholar 

  59. Soderlind, E.; Carlsson, R.; Borrebaeck, C. A.; Ohlin, M., The immune diversity in a test tube-non-immunised antibody libraries and functional variability in defined protein scaffolds, Comb. Chem. High Throughput Screen. 2001, 4, 409–416

    CAS  Google Scholar 

  60. Shimizu, T.; Oda, M.; Azuma, T., Estimation of the relative affinity of b cell receptor by flow cytometry, J. Immunol. Methods 2003, 276, 33–44

    Article  CAS  Google Scholar 

  61. Olsson, P.; Bera, T. K.; Essand, M.; Kumar, V.; Duray, P.; Vincent, J.; Lee, B.; Pastan, I., Gdep, a new gene differentially expressed in normal prostate and prostate cancer, Prostate 2001, 48, 231–241

    Article  CAS  Google Scholar 

  62. Holt, L. J.; Enever, C.; de Wildt, R. M.; Tomlinson, I. M., The use of recombinant antibodies in proteomics, Curr. Opin. Biotechnol. 2000, 11, 445–449

    Article  CAS  Google Scholar 

  63. Ward, E. S., Antibody engineering using Escherichia coli as host, Adv. Pharmacol. 1993, 24, 1–20

    Article  CAS  Google Scholar 

  64. Adams, G. P.; Schier, R., Generating improved single-chain fv molecules for tumor targeting, J. Immunol. Methods 1999, 231, 249–260

    Article  CAS  Google Scholar 

  65. Worn, A.; Plückthun, A., Stability engineering of antibody single-chain fv fragments, J. Mol. Biol. 2001, 305, 989–1010

    Article  CAS  Google Scholar 

  66. Cohen, P. A., Intrabodies. Targeting scfv expression to eukaryotic intracellular compartments, Methods Mol. Biol. 2002, 178, 367–378

    CAS  Google Scholar 

  67. Bilbao, G.; Contreras, J. L.; Curiel, D. T., Genetically engineered intracellular single-chain antibodies in gene therapy, Mol. Biotechnol. 2002, 22, 191–211

    Article  CAS  Google Scholar 

  68. Leath, C. A., III; Douglas, J. T.; Curiel, D. T.; Alvarez, R. D., Single-chain antibodies: A therapeutic modality for cancer gene therapy (review), Int. J. Oncol. 2004, 24, 765–771

    CAS  Google Scholar 

  69. Huhalov, A.; Chester, K. A., Engineered single chain antibody fragments for radioimmunotherapy, Q. J. Nucl. Med. Mol. Imaging 2004, 48, 279–288

    CAS  Google Scholar 

  70. Holliger, P.; Hudson, P. J., Engineered antibody fragments and the rise of single domains, Nat. Biotechnol. 2005, 23, 1126–1136

    Article  CAS  Google Scholar 

  71. Kreutzberger, J., Protein microarrays: A chance to study microorganisms? Appl. Microbiol. Biotechnol. 2006, 70, 383–390

    Article  CAS  Google Scholar 

  72. Denkberg, G.; Lev, A.; Eisenbach, L.; Benhar, I.; Reiter, Y., Selective targeting of melanoma and apcs using a recombinant antibody with tcr-like specificity directed toward a melanoma differentiation antigen, J. Immunol. 2003, 171, 2197–2207

    CAS  Google Scholar 

  73. Artzy Schnirman, A.; Zahavi, E.; Yeger, H.; Rosenfeld, R.; Benhar, I.; Reiter, Y.; Sivan, U., Antibody molecules discriminate between crystalline facets of a gallium arsenide semiconductor, Nano Lett. 2006, 6, 1870–1874

    Article  Google Scholar 

  74. Machlenkin, A.; Azriel-Rosenfeld, R.; Volovitz, I.; Vadai, E.; Lev, A.; Paz, A.; Goldberger, O.; Reiter, Y.; Tzehoval, E.; Benhar, I.; Eisenbach, L., Preventive and therapeutic vaccination with pap-3, a novel human prostate cancer peptide, inhibits carcinoma development in HLA transgenic mice, Cancer Immunol. Immunother. 2007, 56, 217–226

    Article  CAS  Google Scholar 

  75. Azriel-Rosenfeld, R. Ph.D. Thesis, Tel-Aviv University, 2005

    Google Scholar 

  76. Valensi, M. M.Sc. Thesis, Tel-Aviv University, 2005

    Google Scholar 

  77. Machlenkin, A.; Azriel-Rosenfeld, R.; Volovitz, I.; Vadai, E.; Lev, A.; Paz, A.; Goldberger, O.; Reiter, Y.; Tzehoval, E.; Benhar, I.; Eisenbach, L., Preventive and therapeutic vaccination with pap-3, a novel human prostate cancer peptide, inhibits carcinoma development in hla transgenic mice, Cancer Immunol. Immunother. 2007, 56, 217–226

    Article  CAS  Google Scholar 

  78. Machlenkin, A.; Paz, A.; Bar Haim, E.; Goldberger, O.; Finkel, E.; Tirosh, B.; Volovitz, I.; Vadai, E.; Lugassy, G.; Cytron, S.; Lemonnier, F.; Tzehoval, E.; Eisenbach, L., Human ctl epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy, Cancer Res. 2005, 65, 6435–6442

    Article  CAS  Google Scholar 

  79. Pascolo, S.; Bervas, N.; Ure, J. M.; Smith, A. G.; Lemonnier, F. A.; Perarnau, B., Hla-a2.1-restricted education and cytolytic activity of cd8(+) t lymphocytes from beta2 microglobulin (beta2m) hla-a2.1 monochain transgenic h-2db beta2m double knockout mice, J. Exp. Med. 1997, 185, 2043–2051

    Article  CAS  Google Scholar 

  80. Gilbert, I.; Schiffmann, S.; Rubenwolf, S.; Jensen, K.; Mai, T.; Albrecht, C.; Lankenau, A.; Beste, G.; Blank, K.; Gaub, H. E.; Clausen-Schaumann, H., Double chip protein arrays using recombinant single-chain fv antibody fragments, Proteomics 2004, 4, 1417–1420

    Article  CAS  Google Scholar 

  81. Borrebaeck, C. A.; Ekstrom, S.; Hager, A. C.; Nilsson, J.; Laurell, T.; Marko-Varga, G., Protein chips based on recombinant antibody fragments: A highly sensitive approach as detected by mass spectrometry, Biotechniques 2001, 30, 1126–1132

    CAS  Google Scholar 

  82. Angenendt, P.; Wilde, J.; Kijanka, G.; Baars, S.; Cahill, D. J.; Kreutzberger, J.; Lehrach, H.; Konthur, Z.; Glokler, J., Seeing better through a mist: Evaluation of monoclonal recombinant antibody fragments on microarrays, Anal. Chem. 2004, 76, 2916–2921

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Notes

The work reported in this chapter was supported in part by a research grant from the Israel Science Foundation, administered by the Israel National Academy for Sciences and Humanities (Jerusalem, Israel). The n-CoDeR® technology is covered by IP rights held by BioInvent, Sweden (http://www.bioinvent.com).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Benhar, I. (2009). Combinatorial Libraries of Arrayable Single-Chain Antibodies. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_9

Download citation

Publish with us

Policies and ethics