Combinatorial Libraries of Arrayable Single-Chain Antibodies

  • Itai Benhar
Part of the Integrated Analytical Systems book series (ANASYS)


Antibodies that bind their respective targets with high affinity and specificity have proven to be essential reagents for biological research. Antibody phage display has become the leading tool for the rapid isolation of single-chain variable fragment (scFv) antibodies in vitro for research applications, but there is usually a gap between scFv isolation and its application in an array format suitable for high-throughput proteomics. In this chapter, we present our antibody phage display system where antibody isolation and scFv immobilization are facilitated by the design of the phagemid vector used as platform. In our system, the scFvs are fused at their C-termini to a cellulose-binding domain (CBD) and can be immobilized onto cellulose-based filters. This made it possible to develop a unique filter lift screen that allowed the efficient screen for multiple binding specificities, and to directly apply library-derived scFvs in an antibody spotted microarray.


Cellulose Agarose Immobilization Leaching Gallium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Acknowledgments and Notes

The work reported in this chapter was supported in part by a research grant from the Israel Science Foundation, administered by the Israel National Academy for Sciences and Humanities (Jerusalem, Israel). The n-CoDeR® technology is covered by IP rights held by BioInvent, Sweden (


  1. 1.
    Hale, G., Therapeutic antibodies-delivering the promise? Adv. Drug Deliv. Rev. 2006, 58, 633–639CrossRefGoogle Scholar
  2. 2.
    Baker, M., Upping the ante on antibodies, Nat. Biotechnol. 2005, 23, 1065–1072CrossRefGoogle Scholar
  3. 3.
    Wingren, C.; Borrebaeck, C. A., High-throughput proteomics using antibody microarrays, Expert Rev. Proteomics 2004, 1, 355–364CrossRefGoogle Scholar
  4. 4.
    Hoogenboom, H. R., Selecting and screening recombinant antibody libraries, Nat. Biotechnol. 2005, 23, 1105–1116CrossRefGoogle Scholar
  5. 5.
    Bradbury, A. R.; Velappan, N.; Verzillo, V.; Ovecka, M.; Marzari, R.; Sblattero, D.; Chasteen, L.; Siegel, R.; Pavlik, P., Antibodies in proteomics, Methods Mol. Biol. 2004, 248, 519–546Google Scholar
  6. 6.
    DeRisi, J. L.; Iyer, V. R.; Brown, P. O., Exploring the metabolic and genetic control of gene expression on a genomic scale, Science 1997, 278, 680–686CrossRefGoogle Scholar
  7. 7.
    Anderson, L.; Seilhamer, J., A comparison of selected mrna and protein abundances in human liver, Electrophoresis 1997, 18, 533–537CrossRefGoogle Scholar
  8. 8.
    Gygi, S. P.; Rochon, Y.; Franza, B. R.; Aebersold, R., Correlation between protein and mRNA abundance in yeast, Mol. Cell Biol. 1999, 19, 1720–1730Google Scholar
  9. 9.
    Martzen, M. R.; McCraith, S. M.; Spinelli, S. L.; Torres, F. M.; Fields, S.; Grayhack, E. J.; Phizicky, E. M., A biochemical genomics approach for identifying genes by the activity of their products, Science 1999, 286, 1153–1155CrossRefGoogle Scholar
  10. 10.
    Ross-Macdonald, P.; Coelho, P. S.; Roemer, T.; Agarwal, S.; Kumar, A.; Jansen, R.; Cheung, K. H.; Sheehan, A.; Symoniatis, D.; Umansky, L.; Heidtman, M.; Nelson, F. K.; Iwasaki, H.; Hager, K.; Gerstein, M.; Miller, P.; Roeder, G. S.; Snyder, M., Large-scale analysis of the yeast genome by transposon tagging and gene disruption, Nature 1999, 402, 413–418CrossRefGoogle Scholar
  11. 11.
    Carr, K. M.; Rosenblatt, K.; Petricoin, E. F.; Liotta, L. A., Genomic and proteomic approaches for studying human cancer: Prospects for true patient-tailored therapy, Hum. Genomics 2004, 1, 134–140Google Scholar
  12. 12.
    McCafferty, J.; Griffiths, A. D.; Winter, G.; Chiswell, D. J., Phage antibodies: Filamentous phage displaying antibody variable domains, Nature 1990, 348, 552–554CrossRefGoogle Scholar
  13. 13.
    Marks, J. D.; Hoogenboom, H. R.; Bonnert, T. P.; McCafferty, J.; Griffiths, A. D.; Winter, G., By-passing immunization. Human antibodies from v-gene libraries displayed on phage, J. Mol. Biol. 1991, 222, 581–597CrossRefGoogle Scholar
  14. 14.
    Barbas, C. F. d., Recent advances in phage display, Curr. Opin. Biotechnol. 1993, 4, 526–530CrossRefGoogle Scholar
  15. 15.
    Benhar, I., Biotechnological applications of phage and cell display, Biotechnol. Adv. 2001, 19, 1–33CrossRefGoogle Scholar
  16. 16.
    Bird, R. E.; Hardman, K. D.; Jacobson, J. W.; Johnson, S.; Kaufman, B. M.; Lee, S. M.; Lee, T.; Pope, S. H.; Riordan, G. S.; Whitlow, M., Single-chain antigen-binding proteins, Science 1988, 242, 423–426CrossRefGoogle Scholar
  17. 17.
    Huston, J. S.; Levinson, D.; Mudgett-Hunter, M.; Tai, M. S.; Novotny, J.; Margolies, M. N.; Ridge, R. J.; Bruccoleri, R. E.; Haber, E.; Crea, R.; et al., Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain fv analogue produced in Escherichia coli, Proc. Natl. Acad. Sci. (USA) 1988, 85, 5879–5883CrossRefGoogle Scholar
  18. 18.
    Vaughan, T. J.; Williams, A. J.; Pritchard, K.; Osbourn, J. K.; Pope, A. R.; Earnshaw, J. C.; McCafferty, J.; Hodits, R. A.; Wilton, J.; Johnson, K. S., Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library, Nat. Biotechnol. 1996, 14, 309–314CrossRefGoogle Scholar
  19. 19.
    de Haard, H. J.; van Neer, N.; Reurs, A.; Hufton, S. E.; Roovers, R. C.; Henderikx, P.; de Bruine, A. P.; Arends, J. W.; Hoogenboom, H. R., A large non-immunized human fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies, J. Biol. Chem. 1999, 274, 18218–18230CrossRefGoogle Scholar
  20. 20.
    Knappik, A.; Ge, L.; Honegger, A.; Pack, P.; Fischer, M.; Wellnhofer, G.; Hoess, A.; Wolle, J.; Plückthun, A.; Virnekas, B., Fully synthetic human combinatorial antibody libraries (hucal) based on modular consensus frameworks and cdrs randomized with trinucleotides, J. Mol. Biol. 2000, 296, 57–86CrossRefGoogle Scholar
  21. 21.
    Soderlind, E.; Strandberg, L.; Jirholt, P.; Kobayashi, N.; Alexeiva, V.; Aberg, A. M.; Nilsson, A.; Jansson, B.; Ohlin, M.; Wingren, C.; Danielsson, L.; Carlsson, R.; Borrebaeck, C. A., Recombining germline-derived cdr sequences for creating diverse single-framework antibody libraries, Nat. Biotechnol. 2000, 18, 852–856CrossRefGoogle Scholar
  22. 22.
    Azriel-Rosenfeld, R.; Valensi, M.; Benhar, I., A human synthetic combinatorial library of arrayable single-chain antibodies based on shuffling in vivo formed cdrs into general framework regions, J. Mol. Biol. 2004, 335, 177–192CrossRefGoogle Scholar
  23. 23.
    Coomber, D. W., Panning of antibody phage-display libraries. Standard protocols, Methods Mol. Biol. 2002, 178, 133–145Google Scholar
  24. 24.
    Barbas, C. F.; Burton, D. R.; Scott, J. K.; Silverman, G. J., Phage display: A laboratory manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2001, pp 736Google Scholar
  25. 25.
    Holt, L. J.; Bussow, K.; Walter, G.; Tomlinson, I. M., By-passing selection: Direct screening for antibody-antigen interactions using protein arrays, Nucleic Acids Res. 2000, 28, E72CrossRefGoogle Scholar
  26. 26.
    Radosevic, K.; Voerman, J. S.; Hemmes, A.; Muskens, F.; Speleman, L.; de Weers, M.; Rosmalen, J. G.; Knegt, P.; van Ewijk, W., Colony lift assay using cell-coated filters: A fast and efficient method to screen phage libraries for cell-binding clones, J. Immunol. Methods 2003, 272, 219–233CrossRefGoogle Scholar
  27. 27.
    Watkins, J. D.; Beuerlein, G.; Wu, H.; McFadden, P. R.; Pancook, J. D.; Huse, W. D., Discovery of human antibodies to cell surface antigens by capture lift screening of phage-expressed antibody libraries, Anal. Biochem. 1998, 256, 169–177CrossRefGoogle Scholar
  28. 28.
    Wingren, C.; Steinhauer, C.; Ingvarsson, J.; Persson, E.; Larsson, K.; Borrebaeck, C. A., Microarrays based on affinity-tagged single-chain fv antibodies: Sensitive detection of analyte in complex proteomes, Proteomics 2005, 5, 1281–1291CrossRefGoogle Scholar
  29. 29.
    Kwon, Y.; Han, Z.; Karatan, E.; Mrksich, M.; Kay, B. K., Antibody arrays prepared by cutinase-mediated immobilization on self-assembled monolayers, Anal. Chem. 2004, 76, 5713–5720CrossRefGoogle Scholar
  30. 30.
    Rodenburg, C. M.; Mernaugh, R.; Bilbao, G.; Khazaeli, M. B., Production of a single chain anti-cea antibody from the hybridoma cell line t84.66 using a modified colony-lift selection procedure to detect antigen-positive scfv bacterial clones, Hybridoma 1998, 17, 1–8CrossRefGoogle Scholar
  31. 31.
    de Wildt, R. M.; Mundy, C. R.; Gorick, B. D.; Tomlinson, I. M., Antibody arrays for high-throughput screening of antibody-antigen interactions, Nat. Biotechnol. 2000, 18, 989–994CrossRefGoogle Scholar
  32. 32.
    Giovannoni, L.; Viti, F.; Zardi, L.; Neri, D., Isolation of anti-angiogenesis antibodies from a large combinatorial repertoire by colony filter screening, Nucleic Acids Res. 2001, 29, E27CrossRefGoogle Scholar
  33. 33.
    Skerra, A.; Dreher, M. L.; Winter, G., Filter screening of antibody fab fragments secreted from individual bacterial colonies: Specific detection of antigen binding with a two-membrane system, Anal. Biochem. 1991, 196, 151–155CrossRefGoogle Scholar
  34. 34.
    Berdichevsky, Y.; Ben-Zeev, E.; Lamed, R.; Benhar, I., Phage display of a cellulose binding domain from clostridium thermocellum and its application as a tool for antibody engineering, J. Immunol. Methods 1999, 228, 151–162CrossRefGoogle Scholar
  35. 35.
    Hayashi, N.; Kipriyanov, S.; Fuchs, P.; Welschof, M.; Dorsam, H.; Little, M., A single expression system for the display, purification and conjugation of single-chain antibodies, Gene 1995, 160, 129–130CrossRefGoogle Scholar
  36. 36.
    Berdichevsky, Y.; Lamed, R.; Frenkel, D.; Gophna, U.; Bayer, E. A.; Yaron, S.; Shoham, Y.; Benhar, I., Matrix-assisted refolding of single-chain fv- cellulose binding domain fusion proteins, Protein Expr. Purif. 1999, 17, 249–259CrossRefGoogle Scholar
  37. 37.
    Ofir, K.; Berdichevsky, Y.; Benhar, I.; Azriel-Rosenfeld, R.; Lamed, R.; Barak, Y.; Bayer, E. A.; Morag, E., Versatile protein microarray based on carbohydrate-binding modules, Proteomics 2005, 5, 1806–1814CrossRefGoogle Scholar
  38. 38.
    Maynard, J.; Georgiou, G., Antibody engineering, Annu. Rev. Biomed. Eng. 2000, 2, 339–376CrossRefGoogle Scholar
  39. 39.
    Jiang, X.; Suzuki, H.; Hanai, Y.; Wada, F.; Hitomi, K.; Yamane, T.; Nakano, H., A novel strategy for generation of monoclonal antibodies from single b cells using rt-pcr technique and in vitro expression, Biotechnol. Prog. 2006, 22, 979–988CrossRefGoogle Scholar
  40. 40.
    Coronella, J. A.; Telleman, P.; Truong, T. D.; Ylera, F.; Junghans, R. P., Amplification of igg vh and vl (fab) from single human plasma cells and b cells, Nucleic Acids Res. 2000, 28, E85CrossRefGoogle Scholar
  41. 41.
    Wang, X.; Stollar, B. D., Human immunoglobulin variable region gene analysis by single cell RT-PCR, J. Immunol. Methods 2000, 244, 217–225CrossRefGoogle Scholar
  42. 42.
    Nissim, A.; Hoogenboom, H. R.; Tomlinson, I. M.; Flynn, G.; Midgley, C.; Lane, D.; Winter, G., Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents, Embo J. 1994, 13, 692–698Google Scholar
  43. 43.
    Jirholt, P.; Ohlin, M.; Borrebaeck, C. A. K.; Soderlind, E., Exploiting sequence space: Shuffling in vivo formed complementarity determining regions into a master framework, Gene 1998, 215, 471–476CrossRefGoogle Scholar
  44. 44.
    Borrebaeck, C. A.; Ohlin, M., Antibody evolution beyond nature, Nat. Biotechnol. 2002, 20, 1189–1190CrossRefGoogle Scholar
  45. 45.
    Carlsson, R.; Soderlind, E., N-coder concept: Unique types of antibodies for diagnostic use and therapy, Expert Rev. Mol. Diagn. 2001, 1, 102–108CrossRefGoogle Scholar
  46. 46.
    Rothlisberger, D.; Pos, K. M.; Plückthun, A., An antibody library for stabilizing and crystallizing membrane proteins – selecting binders to the citrate carrier cits, FEBS Lett. 2004, 564, 340–348CrossRefGoogle Scholar
  47. 47.
    Tomlinson, I. M.; Walter, G.; Marks, J. D.; Llewelyn, M. B.; Winter, G., The repertoire of human germline vh sequences reveals about fifty groups of vh segments with different hypervariable loops, J. Mol. Biol. 1992, 227, 776–798CrossRefGoogle Scholar
  48. 48.
    Pini, A.; Viti, F.; Santucci, A.; Carnemolla, B.; Zardi, L.; Neri, P.; Neri, D., Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel, J. Biol. Chem. 1998, 273, 21769–21776.CrossRefGoogle Scholar
  49. 49.
    Kobayashi, N.; Soderlind, E.; Borrebaeck, C. A., Analysis of assembly of synthetic antibody fragments: Expression of functional scfv with predefined specificity, Biotechniques 1997, 23, 500–503Google Scholar
  50. 50.
    Cox, J. P.; Tomlinson, I. M.; Winter, G., A directory of human germ-line v kappa segments reveals a strong bias in their usage, Eur. J. Immunol. 1994, 24, 827–836CrossRefGoogle Scholar
  51. 51.
    Griffiths, A. D.; Williams, S. C.; Hartley, O.; Tomlinson, I. M.; Waterhouse, P.; Crosby, W. L.; Kontermann, R. E.; Jones, P. T.; Low, N. M.; Allison, T. J.; et al., Isolation of high affinity human antibodies directly from large synthetic repertoires, Embo J. 1994, 13, 3245–3260Google Scholar
  52. 52.
    Ohlin, M.; Borrebaeck, C. A., Characteristics of human antibody repertoires following active immune responses in vivo, Mol. Immunol. 1996, 33, 583–592CrossRefGoogle Scholar
  53. 53.
    Huang, S. C.; Jiang, R.; Glas, A. M.; Milner, E. C., Non-stochastic utilization of ig v region genes in unselected human peripheral b cells, Mol. Immunol. 1996, 33, 553–560CrossRefGoogle Scholar
  54. 54.
    Benhar, I.; Tamarkin, A.; Marash, L.; Berdichevsky, Y.; Yaron, S.; Shoham, Y.; Lamed, R.; Bayer, E. A., Phage display of cellulose binding domains for biotechnological application, In Glycosyl hydrolases for biomass conversion; M. E. Himmel; J. O. Baker and J. N. Saddler, Ed.; American Chemical Society: Washington, DC, 2001; Vol. 769; 168–189Google Scholar
  55. 55.
    Benhar, I.; Reiter, Y., Phage display of single-chain antibodies (scfvs), In Current protocols in immunology; J. E. Coligan. Ed.; Wiley, New York, NY, 2002; 10.19B.11–10.19B.39Google Scholar
  56. 56.
    Feldhaus, M. J.; Siegel, R. W.; Opresko, L. K.; Coleman, J. R.; Feldhaus, J. M.; Yeung, Y. A.; Cochran, J. R.; Heinzelman, P.; Colby, D.; Swers, J.; Graff, C.; Wiley, H. S.; Wittrup, K. D., Flow-cytometric isolation of human antibodies from a nonimmune saccharomyces cerevisiae surface display library, Nat. Biotechnol. 2003, 21, 163–170CrossRefGoogle Scholar
  57. 57.
    Sheets, M. D.; Amersdorfer, P.; Finnern, R.; Sargent, P.; Lindqvist, E.; Schier, R.; Hemingsen, G.; Wong, C.; Gerhart, J. C.; Marks, J. D., Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens, Proc Natl Acad Sci U S A 1998, 95, 6157–6162CrossRefGoogle Scholar
  58. 58.
    Steukers, M.; Schaus, J. M.; van Gool, R.; Hoyoux, A.; Richalet, P.; Sexton, D. J.; Nixon, A. E.; Vanhove, M., Rapid kinetic-based screening of human fab fragments, J. Immunol. Methods 2006, 310, 126–135CrossRefGoogle Scholar
  59. 59.
    Soderlind, E.; Carlsson, R.; Borrebaeck, C. A.; Ohlin, M., The immune diversity in a test tube-non-immunised antibody libraries and functional variability in defined protein scaffolds, Comb. Chem. High Throughput Screen. 2001, 4, 409–416Google Scholar
  60. 60.
    Shimizu, T.; Oda, M.; Azuma, T., Estimation of the relative affinity of b cell receptor by flow cytometry, J. Immunol. Methods 2003, 276, 33–44CrossRefGoogle Scholar
  61. 61.
    Olsson, P.; Bera, T. K.; Essand, M.; Kumar, V.; Duray, P.; Vincent, J.; Lee, B.; Pastan, I., Gdep, a new gene differentially expressed in normal prostate and prostate cancer, Prostate 2001, 48, 231–241CrossRefGoogle Scholar
  62. 62.
    Holt, L. J.; Enever, C.; de Wildt, R. M.; Tomlinson, I. M., The use of recombinant antibodies in proteomics, Curr. Opin. Biotechnol. 2000, 11, 445–449CrossRefGoogle Scholar
  63. 63.
    Ward, E. S., Antibody engineering using Escherichia coli as host, Adv. Pharmacol. 1993, 24, 1–20CrossRefGoogle Scholar
  64. 64.
    Adams, G. P.; Schier, R., Generating improved single-chain fv molecules for tumor targeting, J. Immunol. Methods 1999, 231, 249–260CrossRefGoogle Scholar
  65. 65.
    Worn, A.; Plückthun, A., Stability engineering of antibody single-chain fv fragments, J. Mol. Biol. 2001, 305, 989–1010CrossRefGoogle Scholar
  66. 66.
    Cohen, P. A., Intrabodies. Targeting scfv expression to eukaryotic intracellular compartments, Methods Mol. Biol. 2002, 178, 367–378Google Scholar
  67. 67.
    Bilbao, G.; Contreras, J. L.; Curiel, D. T., Genetically engineered intracellular single-chain antibodies in gene therapy, Mol. Biotechnol. 2002, 22, 191–211CrossRefGoogle Scholar
  68. 68.
    Leath, C. A., III; Douglas, J. T.; Curiel, D. T.; Alvarez, R. D., Single-chain antibodies: A therapeutic modality for cancer gene therapy (review), Int. J. Oncol. 2004, 24, 765–771Google Scholar
  69. 69.
    Huhalov, A.; Chester, K. A., Engineered single chain antibody fragments for radioimmunotherapy, Q. J. Nucl. Med. Mol. Imaging 2004, 48, 279–288Google Scholar
  70. 70.
    Holliger, P.; Hudson, P. J., Engineered antibody fragments and the rise of single domains, Nat. Biotechnol. 2005, 23, 1126–1136CrossRefGoogle Scholar
  71. 71.
    Kreutzberger, J., Protein microarrays: A chance to study microorganisms? Appl. Microbiol. Biotechnol. 2006, 70, 383–390CrossRefGoogle Scholar
  72. 72.
    Denkberg, G.; Lev, A.; Eisenbach, L.; Benhar, I.; Reiter, Y., Selective targeting of melanoma and apcs using a recombinant antibody with tcr-like specificity directed toward a melanoma differentiation antigen, J. Immunol. 2003, 171, 2197–2207Google Scholar
  73. 73.
    Artzy Schnirman, A.; Zahavi, E.; Yeger, H.; Rosenfeld, R.; Benhar, I.; Reiter, Y.; Sivan, U., Antibody molecules discriminate between crystalline facets of a gallium arsenide semiconductor, Nano Lett. 2006, 6, 1870–1874CrossRefGoogle Scholar
  74. 74.
    Machlenkin, A.; Azriel-Rosenfeld, R.; Volovitz, I.; Vadai, E.; Lev, A.; Paz, A.; Goldberger, O.; Reiter, Y.; Tzehoval, E.; Benhar, I.; Eisenbach, L., Preventive and therapeutic vaccination with pap-3, a novel human prostate cancer peptide, inhibits carcinoma development in HLA transgenic mice, Cancer Immunol. Immunother. 2007, 56, 217–226CrossRefGoogle Scholar
  75. 75.
    Azriel-Rosenfeld, R. Ph.D. Thesis, Tel-Aviv University, 2005Google Scholar
  76. 76.
    Valensi, M. M.Sc. Thesis, Tel-Aviv University, 2005Google Scholar
  77. 77.
    Machlenkin, A.; Azriel-Rosenfeld, R.; Volovitz, I.; Vadai, E.; Lev, A.; Paz, A.; Goldberger, O.; Reiter, Y.; Tzehoval, E.; Benhar, I.; Eisenbach, L., Preventive and therapeutic vaccination with pap-3, a novel human prostate cancer peptide, inhibits carcinoma development in hla transgenic mice, Cancer Immunol. Immunother. 2007, 56, 217–226CrossRefGoogle Scholar
  78. 78.
    Machlenkin, A.; Paz, A.; Bar Haim, E.; Goldberger, O.; Finkel, E.; Tirosh, B.; Volovitz, I.; Vadai, E.; Lugassy, G.; Cytron, S.; Lemonnier, F.; Tzehoval, E.; Eisenbach, L., Human ctl epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy, Cancer Res. 2005, 65, 6435–6442CrossRefGoogle Scholar
  79. 79.
    Pascolo, S.; Bervas, N.; Ure, J. M.; Smith, A. G.; Lemonnier, F. A.; Perarnau, B., Hla-a2.1-restricted education and cytolytic activity of cd8(+) t lymphocytes from beta2 microglobulin (beta2m) hla-a2.1 monochain transgenic h-2db beta2m double knockout mice, J. Exp. Med. 1997, 185, 2043–2051CrossRefGoogle Scholar
  80. 80.
    Gilbert, I.; Schiffmann, S.; Rubenwolf, S.; Jensen, K.; Mai, T.; Albrecht, C.; Lankenau, A.; Beste, G.; Blank, K.; Gaub, H. E.; Clausen-Schaumann, H., Double chip protein arrays using recombinant single-chain fv antibody fragments, Proteomics 2004, 4, 1417–1420CrossRefGoogle Scholar
  81. 81.
    Borrebaeck, C. A.; Ekstrom, S.; Hager, A. C.; Nilsson, J.; Laurell, T.; Marko-Varga, G., Protein chips based on recombinant antibody fragments: A highly sensitive approach as detected by mass spectrometry, Biotechniques 2001, 30, 1126–1132Google Scholar
  82. 82.
    Angenendt, P.; Wilde, J.; Kijanka, G.; Baars, S.; Cahill, D. J.; Kreutzberger, J.; Lehrach, H.; Konthur, Z.; Glokler, J., Seeing better through a mist: Evaluation of monoclonal recombinant antibody fragments on microarrays, Anal. Chem. 2004, 76, 2916–2921CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Itai Benhar
    • 1
  1. 1.Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life SciencesTel-Aviv UniversityIsrael

Personalised recommendations