Robotic Systems for Combinatorial Electrochemistry

  • Sabine BorgmannEmail author
  • Wolfgang Schuhmann
Part of the Integrated Analytical Systems book series (ANASYS)


The scope of this chapter is to present the current state of the art in the field of combinatorial electrochemistry with the main focus on plate-based technologies. In particular, it is focused on the development and use of electrochemical robotic systems.


Nitric Oxide Microtiter Plate Robotic System Electrode Array Differential Pulse Voltammetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of the work was financially supported by the DFG (Schu 929/4-1, Ju 103/11-1, Sp 265/17-1) in the framework of the cooperative project “Kombinatorische Mikroelektrochemie ”. The authors appreciate in particular the cooperation with the research groups of Prof. Dr. Bernd Speiser and Prof. Dr. G. Jung in connection with this project. Part of the described work was financially supported by the European Commission (QLK3-2001-00244; HPRN-CT-2002-00186), the BMBF (FKZ-0312006D; FKZ-13N8607), the DFG (SFB459A5; Schu929/6-1). We are especially grateful for the conceptual contributions to the electrochemical robotic system from Dr. Thomas Erichsen (Sensolytics, GmbH). We highly appreciate the contributions from the mechanical workshop of the faculty of chemistry at the Ruhr-Universit ät Bochum. We thank the following students and staff for their input into projects related to the electrochemical robotic systems: Sandra Janiak, Kathrin Eckhard, Sebastian Neugebauer, Dirk Ruhlig, Aiste Vilkanauskyte, Sonnur Isik, Ayodele O. Okunola, Christian Leson, Halyna Shkil, Eva M. Bonsen (Ruhr-Universit ät Bochum) and Wolfgang M ärkle, Carsten Tittel (Universit ät Tübingen). The authors appreciate the careful reading of the manuscript by Dr. Melissa A. Jones.


  1. 1.
    Hanak, J. J., Multiple-sample-concept in materials research – synthesis, compositional analysis and testing of entire multicomponent systems, J. Mater. Sci. 1970, 5, 964–971CrossRefGoogle Scholar
  2. 2.
    Sundberg, S. A., High-throughput and ultra-high-throughput screening: Solution- and cell-based approaches, Curr. Opin. Biotechnol. 2000, 11, 47–53CrossRefGoogle Scholar
  3. 3.
    Bevan, C. D.; Lloyd, R. S., A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates, Anal. Chem. 2000, 72, 1781–1787CrossRefGoogle Scholar
  4. 4.
    Jung, G. Combinatorial chemistry; Wiley-VCH: Weinheim, 1999 CrossRefGoogle Scholar
  5. 5.
    Hoffmann, R., Not a library, Angew. Chem.-Int. Edit. 2001, 40, 3337–3340CrossRefGoogle Scholar
  6. 6.
    Stieber, F.; Grether, U.; Waldmann, H., An oxidation-labile traceless linker for solid-phase synthesis, Angew. Chem.-Int. Edit. 1999, 38, 1073–1077CrossRefGoogle Scholar
  7. 7.
    Coates, W. J.; Hunter, D. J.; MacLachlan, W. S., Successful implementation of automation in medicinal chemistry, Drug Discov. Today 2000, 5, 521–527CrossRefGoogle Scholar
  8. 8.
    Merrifield, R. B., Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide, J. Am. Chem. Soc. 1963, 85, 2149–2154CrossRefGoogle Scholar
  9. 9.
    Speiser, B., From cyclic voltammetry to scanning electrochemical microscopy: Modern electroanalytical methods to study organic compounds, materials, and reactions, Curr. Org. Chem. 1999, 3, 171–191Google Scholar
  10. 10.
    Lund, H.; Hammerich, O. Organic electrochemistry; 4th ed.; Marcel Dekker: New York, N Y, 2001Google Scholar
  11. 11.
    Steckhan, E., Laboratory techniques in electroanalytical chemistry; Marcel Dekker: New York, 1996, pp 641–681Google Scholar
  12. 12.
    Schultze, J. W.; Bressel, A., Principles of electrochemical micro- and nano-system technologies, Electrochim. Acta 2001, 47, 3–21CrossRefGoogle Scholar
  13. 13.
    Evans, U.; Colavita, P. E.; Doescher, M. S.; Schiza, M.; Myrick, M. L., Construction and characterization of a nanowell electrode array, Nano Lett. 2002, 2, 641–645CrossRefGoogle Scholar
  14. 14.
    Shono, T. Electroorganic chemistry as a new tool in organic synthesis Springer: New York, 1984Google Scholar
  15. 15.
    Weinberg, N. L. Technique of electroorganic synthesis; Wiley: New York, NY, 1974–1982; Vol. 1–3Google Scholar
  16. 16.
    Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E., Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts, Science 1998, 280, 1735–1737CrossRefGoogle Scholar
  17. 17.
    Sullivan, M. G.; Utomo, H.; Fagan, P. J.; Ward, M. D., Automated electrochemical analysis with combinatorial electrode arrays, Anal. Chem. 1999, 71, 4369–4375CrossRefGoogle Scholar
  18. 18.
    Feeney, R.; Kounaves, S. P., Microfabricated ultramicroelectrode arrays: Developments, advances, and applications in environmental analysis, Electroanalysis 2000, 12, 677–684CrossRefGoogle Scholar
  19. 19.
    Jiang, R. Z.; Chu, D., A combinatorial approach toward electrochemical analysis, J. Electroanal. Chem. 2002, 527, 137–142CrossRefGoogle Scholar
  20. 20.
    Sun, Y. P.; Buck, H.; Mallouk, T. E., Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors, Anal. Chem. 2001, 73, 1599–1604CrossRefGoogle Scholar
  21. 21.
    Mallouk, T. E.; Smotkin, E. S., Combinatorial catalyst development methods (chapter 23), In Handbook of fuel cells – fundamentals, technology and application; W. Vielstich; A. Lamm and H. A. Gasteiger, Ed.; Wiley, New York, NY, 2003; Vol. Volume 2: ElectrocatalysisGoogle Scholar
  22. 22.
    Siu, T.; Li, W.; Yudin, A. K., Parallel electrosynthesis of alpha-alkoxycarbamates alpha-alkoxyamides, and alpha-alkoxysulfonamides using the spatially addressable electrolysis platform (saep), J. Comb. Chem. 2000, 2, 545–549CrossRefGoogle Scholar
  23. 23.
    Siu, T.; Li, W.; Yudin, A. K., Parallel electrosynthesis of 1,2-diamines, J. Comb. Chem. 2001, 3, 554–558CrossRefGoogle Scholar
  24. 24.
    Yudin, A. K.; Siu, T., Combinatorial electrochemistry, Curr. Opin. Chem. Biol. 2001, 5, 269–272CrossRefGoogle Scholar
  25. 25.
    Siu, T.; Yudin, A. K., Practical olefin aziridination with a broad substrate scope, J. Am. Chem. Soc. 2002, 124, 530–531CrossRefGoogle Scholar
  26. 26.
    Siu, T.; Yekta, S.; Yudin, A. K., New approach to rapid generation and screening of diverse catalytic materials on electrode surfaces, J. Am. Chem. Soc. 2000, 122, 11787–11790CrossRefGoogle Scholar
  27. 27.
    Suga, S.; Okajima, M.; Fujiwara, K.; Yoshida, J., “Cation flow ” method: a new approach to electrochemical conventional and combinatorial organic syntheses using electrochemical microflow systems, J. Am. Chem. Soc. 2001, 123, 7941–7942CrossRefGoogle Scholar
  28. 28.
    Kulikov, V.; Mirsky, V. M., Equipment for combinatorial electrochemical polymerization and high-throughput investigation of electrical properties of the synthesized polymers, Meas. Sci. Technol. 2004, 15, 49–54CrossRefGoogle Scholar
  29. 29.
    Pilard, J. F.; Marchand, G.; Simonet, J., Chemical synthesis at solid interfaces. On the use of conducting polythiophenes equipped of adequate linkers allowing a facile and highly selective cathodic s-n bond scission with a fully regenerating resin process, Tetrahedron 1998, 54, 9401–9414CrossRefGoogle Scholar
  30. 30.
    Marchand, G.; Pilard, J. F.; Simonet, J., Solid phase chemistry at a modified cathode surface. First synthesis of a polyamine precursor, Tetrahedron Lett. 2000, 41, 883–885CrossRefGoogle Scholar
  31. 31.
    Nad, S.; Breinbauer, R., Electroorganic synthesis on the solid phase using polymer beads as supports, Angew. Chem.-Int. Edit. 2004, 43, 2297–2299CrossRefGoogle Scholar
  32. 32.
    Tesfu, E.; Maurer, K.; Ragsdale, S. R.; Moeller, K. D., Building addressable libraries: The use of electrochemistry for generating reactive pd(ii) reagents at preselected sites on a chip, J. Am. Chem. Soc. 2004, 126, 6212–6213CrossRefGoogle Scholar
  33. 33.
    Tian, J.; Maurer, K.; Tesfu, E.; Moeller, K. D., Building addressable libraries: The use of electrochemistry for spatially isolating a heck reaction on a chip, J. Am. Chem. Soc. 2005, 127, 1392–1393CrossRefGoogle Scholar
  34. 34.
    Tesfu, E.; Maurer, K.; Moeller, K. D., Building addressable libraries: Spatially isolated, chip-based reductive amination reactions, J. Am. Chem. Soc. 2006, 128, 70–71CrossRefGoogle Scholar
  35. 35.
    Tesfu, E.; Roth, K.; Maurer, K.; Moeller, K. D., Buillding addressable libraries: Site selective coumarin synthesis and the “Real-time ” Signaling of antiibody-coumarin binding, Org. Lett. 2006, 8, 709–712CrossRefGoogle Scholar
  36. 36.
    Nagl, S.; Schaeferling, M.; Wolfbeis, O. S., Fluorescence analysis in microarray technology, Microchim. Acta 2005, 151, 1–21CrossRefGoogle Scholar
  37. 37.
    Kuswandi, B.; Tombelli, S.; Marazza, G.; Mascini, M., Recent advances in optical DNA biosensors technology, Chimia 2005, 59, 236–242CrossRefGoogle Scholar
  38. 38.
    Petrik, J., Diagnostic applications of microarrays, Transfus. Med. 2006, 16, 233–247CrossRefGoogle Scholar
  39. 39.
    Vercoutere, W.; Akeson, M., Biosensors for DNA sequence detection, Curr. Opin. Chem. Biol. 2002, 6, 816–822CrossRefGoogle Scholar
  40. 40.
    Wang, J., Portable electrochemical systems, Trends Anal. Chem. 2002, 21, 226–232CrossRefGoogle Scholar
  41. 41.
    Albers, J.; Grunwald, T.; Nebling, E.; Piechotta, G.; Hintsche, R., Electrical biochip technology – a tool for microarrays and continuous monitoring, Anal. Bioanal. Chem. 2003, 377, 521–527CrossRefGoogle Scholar
  42. 42.
    Kricka, L. J.; Park, J. Y.; Li, S. F. Y.; Fortina, P., Miniaturized detection technology in molecular diagnostics, Expert Rev. Mol. Diagn. 2005, 5, 549–559CrossRefGoogle Scholar
  43. 43.
    Lagally, E. T.; Soh, H. T., Integrated genetic analysis microsystems, Crit. Rev. Solid State Mat. Sci. 2005, 30, 207–233CrossRefGoogle Scholar
  44. 44.
    Borgmann, S. PhD thesis Thesis, Ruhr-Universit ät Bochum, 2005Google Scholar
  45. 45.
    Campas, M.; Katakis, I., Electrochemically arrayed and addressed DNA multi-sensor platforms, Sens. Actuator B-Chem. 2006, 114, 897–902CrossRefGoogle Scholar
  46. 46.
    Andreu, A.; Merkert, J. W.; Lecaros, L. A.; Broglin, B. L.; Brazell, J. T.; El-Kouedi, M., Detection of DNA oligonucleotides on nanowire array electrodes using chronocoulometry, Sens. Actuator B-Chem. 2006, 114, 1116–1120CrossRefGoogle Scholar
  47. 47.
    Elsholz, B.; Worl, R.; Blohm, L.; Albers, J.; Feucht, H.; Grunwald, T.; Jurgen, B.; Schweder, T.; Hintsche, R., Automated detection and quantitation of bacterial RNA by using electrical microarrays, Anal. Chem. 2006, 78, 4794–4802CrossRefGoogle Scholar
  48. 48.
    Turcu, F.; Schulte, A.; Hartwich, G.; Schuhmann, W., Label-free electrochemical recognition of DNA hybridization by means of modulation of the feedback current in SECM, Angew. Chem.-Int. Edit. 2004, 43, 3482–3485CrossRefGoogle Scholar
  49. 49.
    Mir, M.; Katakis, I., Towards a fast-responding, label-free electrochemical DNA biosensor, Anal. Bioanal. Chem. 2005, 381, 1033–1035CrossRefGoogle Scholar
  50. 50.
    Ghindilis, A. L.; Smith, M. W.; Schwarzkopf, K. R.; Roth, K. M.; Peyvan, K.; Munro, S. B.; Lodes, M. J.; Stöver, A. G.; Bernards, K.; Dill, K.; McShea, A., Combimatrix oligonucleotide arrays: Genotyping and gene expression assays employing electrochemical detection, Biosens. Bioelectron. 2007, 22, 1853–1860CrossRefGoogle Scholar
  51. 51.
    Baldwin, R. P., Recent advances in electrochemical detection in capillary electrophoresis, Electrophoresis 2000, 21, 4017–4028CrossRefGoogle Scholar
  52. 52.
    Yi, C. Q.; Zhang, Q.; Li, C. W.; Yang, J.; Zhao, J. L.; Yang, M. S., Optical and electrochemical detection techniques for cell-based microfluidic systems, Anal. Bioanal. Chem. 2006, 384, 1259–1268CrossRefGoogle Scholar
  53. 53.
    Ruzicka, J., From beaker chemistry to programmable microfluidics, Collect. Czech. Chem. Commun. 2005, 70, 1737–1755CrossRefGoogle Scholar
  54. 54.
    Le Gac, S.; Rolando, C., Microsystems in chemistry, Actual Chim. 2002, 2, 21–32Google Scholar
  55. 55.
    Stefan, R. I.; van Staden, J. K. F.; Aboul-Enein, H. Y., Design and use of electrochemical sensors in enantioselective high throughput screening of drugs. A minireview, Comb. Chem. High Throughput Screen 2000, 3, 445–454Google Scholar
  56. 56.
    Guerin, S.; Hayden, B. E.; Pletcher, D.; Rendall, M. E.; Suchsland, J. P., A combinatorial approach to the study of particle size effects on supported electrocatalysts: Oxygen reduction on gold, J. Comb. Chem. 2006, 8, 679–686CrossRefGoogle Scholar
  57. 57.
    Guerin, S.; Hayden, B. E., Physical vapor deposition method for the high-throughput synthesis of solid-state material libraries, J. Comb. Chem. 2006, 8, 66–73CrossRefGoogle Scholar
  58. 58.
    Guerin, S.; Hayden, B. E.; Pletcher, D.; Rendall, M. E.; Suchsland, J. P.; Williams, L. J., Combinatorial approach to the study of particle size effects in electrocatalysis: Synthesis of supported gold nanoparticles, J. Comb. Chem. 2006, 8, 791–798CrossRefGoogle Scholar
  59. 59.
    Reiter, S.; Eckhard, K.; Blochl, A.; Schuhmann, W., Redox modification of proteins using sequential-parallel electrochemistry in microtiter plates, Analyst 2001, 126, 1912–1918CrossRefGoogle Scholar
  60. 60.
    Tang, T. C.; Deng, A. P.; Huang, H. J., Immunoassay with a microtiter plate incorporated multichannel electrochemical detection system, Anal. Chem. 2002, 74, 2617–2621CrossRefGoogle Scholar
  61. 61.
    Jiang, R. Z.; Rong, C.; Chu, D., Combinatorial approach toward high-throughput analysis of direct methanol fuel cells, J. Comb. Chem. 2005, 7, 272–278CrossRefGoogle Scholar
  62. 62.
    Jiang, R. Z.; Chu, D. R., An electrode probe for high-throughput screening of electrochemical libraries, Rev. Sci. Instrum. 2005, 76, Art. No. 062213Google Scholar
  63. 63.
    Andreescu, S.; Sadik, O. A.; McGee, D. W., Autonomous multielectrode system for monitoring the interactions of isoflavonoids with lung cancer cells, Anal. Chem. 2004, 76, 2321–2330CrossRefGoogle Scholar
  64. 64.
    Andreescu, S.; Sadik, O. A., Advanced electrochemical sensors for cell cancer monitoring, Methods 2005, 37, 84–93CrossRefGoogle Scholar
  65. 65.
    Karasinski, J.; Andreescu, S.; Sadik, O. A.; Lavine, B.; Vora, M. N., Multiarray sensors with pattern recognition for the detection, classification, and differentiation of bacteria at subspecies and strain levels, Anal. Chem. 2005, 77, 7941–7949CrossRefGoogle Scholar
  66. 66.
    Erichsen, T.; Reiter, S.; Ryabova, V.; Bonsen, E. M.; Schuhmann, W.; Markle, W.; Tittel, C.; Jung, G.; Speiser, B., Combinatorial microelectrochemistry: Development and evaluation of an electrochemical robotic system, Rev. Sci. Instrum. 2005, 76, Art. No. 062204Google Scholar
  67. 67.
    Briehn, C. A.; Schiedel, M. S.; Bonsen, E. M.; Schuhmann, W.; Bauerle, P., Single-compound libraries of organic materials: From the combinatorial synthesis of conjugated oligomers to structure-property relationships, Angew. Chem.-Int. Edit. 2001, 40, 4680–4683CrossRefGoogle Scholar
  68. 68.
    Isik, S.; Etienne, M.; Oni, J.; Blochl, A.; Reiter, S.; Schuhmann, W., Dual microelectrodes for distance control and detection of nitric oxide from endothelial cells by means of scanning electrochemical microscope, Anal. Chem. 2004, 76, 6389–6394CrossRefGoogle Scholar
  69. 69.
    Borgmann, S.; Radtke, I.; Erichsen, T.; Blochl, A.; Heumann, R.; Schuhmann, W., Electrochemical high-content screening of nitric oxide release from endothelial cells, ChemBioChem 2006, 7, 662–668CrossRefGoogle Scholar
  70. 70.
    Briehn, C. A.; Bauerle, P., From solid-phase synthesis of pi-conjugated oligomers to combinatorial library construction and screening, Chem. Commun. 2002, 1015–1023Google Scholar
  71. 71.
    Lindner, E.; Lu, Z. L.; Mayer, H. A.; Speiser, B.; Tittel, C.; Warad, I., Combinatorial micro electrochemistry. Part 4: Cyclic voltammetric redox screening of homogeneous ruthenium(ii) hydrogenation catalysts, Electrochem. Commun. 2005, 7, 1013–1020CrossRefGoogle Scholar
  72. 72.
    Markle, W.; Speiser, B.; Tittel, C.; Vollmer, M., Combinatorial micro electrochemistry – part 1. Automated micro electrosynthesis of iminoquinol ether and [1,2,4]triazolo[4,3-alpha] pyridinium perchlorate collections in the wells of microtiter plates, Electrochim. Acta 2005, 50, 2753–2762CrossRefGoogle Scholar
  73. 73.
    Markle, W.; Speiser, B., Combinatorial microelectrochemistry – part 3. On-line monitoring of electrolyses by steady-state cyclic voltammetry at microelectrodes, Electrochim. Acta 2005, 50, 4916–4925CrossRefGoogle Scholar
  74. 74.
    Hintsche, R.; Albers, J.; Bernt, H.; Eder, A. E., Multiplexing of microelectrode arrays in voltammetric measurements, Electroanalysis 2000, 12, 660–665CrossRefGoogle Scholar
  75. 75.
    Ryabova, V.; Schulte, A.; Erichsen, T.; Schuhmann, W., Robotic sequential analysis of a library of metalloporphyrins as electrocatalysts for voltammetric nitric oxide sensors, Analyst 2005, 130, 1245–1252CrossRefGoogle Scholar
  76. 76.
    Reiter, S.; Ruhlig, D.; Ngounou, B.; Neugebauer, S.; Janiak, S.; Vilkanauskyte, A.; Erichsen, T.; Schuhmann, W., An electrochemical robotic system for the optimization of amperometric glucose biosensors based on a library of cathodic electrodeposition paints, Macromol. Rapid Commun. 2004, 25, 348–354CrossRefGoogle Scholar
  77. 77.
    Schuhmann, W., Conducting polymer based amperometric enzyme electrodes, Mikrochim. Acta 1995, 121, 1–29CrossRefGoogle Scholar
  78. 78.
    Ruhlig, D.; Schulte, A.; Schuhmann, W., An electrochemical robotic system for routine cathodic adsorptive stripping analysis of ni2+ ion release from corroding niti shape memory alloys, Electroanalysis 2006, 18, 53–58CrossRefGoogle Scholar
  79. 79.
    Bard, A. J.; Fan, F. R. F.; Kwak, J.; Lev, O., Scanning electrochemical microscopy – introduction and principles, Anal. Chem. 1989, 61, 132–138CrossRefGoogle Scholar
  80. 80.
    Mirkin, M. V.; Horrocks, B. R., Electroanalytical measurements using the scanning electrochemical microscope, Anal. Chim. Acta 2000, 406, 119–146CrossRefGoogle Scholar
  81. 81.
    Barker, A. L.; Gonsalves, M.; Macpherson, J. V.; Slevin, C. J.; Unwin, P. R., Scanning electrochemical microscopy: Beyond the solid/liquid interface, Anal. Chim. Acta 1999, 385, 223–240CrossRefGoogle Scholar
  82. 82.
    Kurzawa, C.; Hengstenberg, A.; Schuhmann, W., Immobilization method for the preparation of biosensors based on ph shift-induced deposition of biomolecule-containing polymer films, Anal. Chem. 2002, 74, 355–361CrossRefGoogle Scholar
  83. 83.
    Smutok, O.; Ngounou, B.; Pavlishko, H.; Gayda, G.; Gonchar, M.; Schuhmann, W., A reagentless bienzyme amperometric biosensor based on alcohol oxidase/peroxidase and an os-complex modified electrodeposition paint, Sens. Actuator B-Chem. 2006, 113, 590–598CrossRefGoogle Scholar
  84. 84.
    Kwak, J.; Bard, A. J., Scanning electrochemical microscopy – theory of the feedback mode, Anal. Chem. 1989, 61, 1221–1227CrossRefGoogle Scholar
  85. 85.
    Engstrom, R. C.; Pharr, C. M., Scanning electrochemical microscopy, Anal. Chem. 1989, 61, 1099–1104CrossRefGoogle Scholar
  86. 86.
    Heinze, J., Ultramicroelectrodes – a new dimension in electrochemistry, Angew. Chem.-Int. Edit. Engl. 1991, 30, 170–171CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Fachbereich Chemie - Biologisch- Chemische MikrostrukturtechnikTechnische Universität DortmundDortmundGermany
  2. 2.ISAS - Institute for Analytical SciencesDortmundGermany
  3. 3.Analytische Chemie - Elektroanalytik & SensorikRuhr-Universität BochumBochumGermany

Personalised recommendations