Amplified DNA Biosensors

  • Itamar Willner
  • Bella Shlyahovsky
  • Bilha Willner
  • Maya Zayats
Part of the Integrated Analytical Systems book series (ANASYS)


Amplified detection of DNA is a central research topic in modern bioanalytical science. Electronic or optical transduction of DNA recognition events provides readout signals for DNA biosensors. Amplification of the DNA analysis is accomplished by the coupling of nucleic acid-functionalized enzymes or nucleic acid-functionalized nanoparticles (NP) as labels for the DNA duplex formation. This chapter discusses the amplified amperometric analysis of DNA by redox enzymes, the amplified optical sensing of DNA by enzymes or DNAzymes, and the amplified voltammetric, optical, or microgravimetric analysis of DNA using metallic or semiconductor nanoparticles. Further approaches to amplify DNA detection involve the use of micro-carriers of redox compounds as labels for DNA complex formation on electrodes, or the use of micro-objects such as liposomes, that label the resulting DNA complexes on electrodes and alter the interfacial properties of the electrodes. Finally, DNA machines are used for the optical detection of DNA, and the systems are suggested as future analytical procedures that could substitute the polymerase chain reaction (PCR) process.


Probe Nucleic Acid Redox Label Faradaic Impedance Spectroscopy Faradaic Impedance Spectrum Scanometric Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our research on amplified DNA analyses is supported by the Israel Ministry of Science and Technology, and by the Johnson & Johnson Corporation.


  1. 1.
    Amine, A., Mohammadi, H., Bourais, I. and Palleschi, G. (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectron. 21:1405–1423.Google Scholar
  2. 2.
    Rodriguez-Mozaz, S., de Alda, M.J.L. and Barcelo, D. (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 386:1025–1041.Google Scholar
  3. 3.
    Sadik, O.A., Land, W.H. and Wang, J. (2003) Targeting chemical and biological warfare agents at the molecular level. Electroanalysis 15:1149–1159.Google Scholar
  4. 4.
    Caminade, A.M., Padie, C., Laurent, R., Maraval, A. and Majoral, J.P. (2006) Uses of den-drimers for DNA microarrays. Sensors 6:901–914.Google Scholar
  5. 5.
    Epstein, J.R., Biran, I. and Walt, D.R. (2002) Fluorescence-based nucleic acid detection and microarrays. Anal. Chim. Acta 469:3–36.Google Scholar
  6. 6.
    Sapsford, K.E., Pons, T., Medintz, I.L. and Mattoussi, H. (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6:925–953.Google Scholar
  7. 7.
    Katz, E. and Willner, I. (2003) Probing biomolecular interactions at conductive and semicon-ductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNAsensors, and enzyme biosensors. Electroanalysis 15:913–947.Google Scholar
  8. 8.
    Gooding, J.J. (2002) Electrochemical DNA hybridization biosensors. Electroanalysis 14: 1149–1156.Google Scholar
  9. 9.
    Drummond, T.G., Hill, M.G. and Barton, J.K. (2003) Electrochemical DNA sensors. Nat. Biotechnol. 21:1192–1199.Google Scholar
  10. 10.
    Duman, M., Saber, R. and Piskin, E. (2003) A new approach for immobilization of oligonu-cleotides onto piezoelectric quartz crystal for preparation of a nucleic acid sensor for following hybridization. Biosens. Bioelectron. 18:1355–1363.Google Scholar
  11. 11.
    Mulvaney, P. (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800.Google Scholar
  12. 12.
    Alvarez, M.M., Khoury, J.T., Schaaff, T.G., Shafigullin, M.N., Vezmar, I. and Whetten, R.L. (1997) Optical absorption spectra of nanocrystal gold molecules J. Phys. Chem. B 101: 3706–3712.Google Scholar
  13. 13.
    Hutter, E. and Fendler, J.H. (2004) Exploitation of localized surface plasmon resonance. Adv. Mater. 16:1685–1706.Google Scholar
  14. 14.
    Mirkin, C.A., Letsinger, R.L., Mucic, R.C. and Storhoff, J.J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature (Lond.) 382:607–609.Google Scholar
  15. 15.
    Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. and Mirkin, C.A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081.Google Scholar
  16. 16.
    Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A. and Letsinger, R.L. (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120:1959–1964.Google Scholar
  17. 17.
    Reynolds, R.A., Mirkin, C.A. and Letsinger, R.L. (2000) Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc. 122:3795–3796.Google Scholar
  18. 18.
    Souza, G.R. and Miller, J.H. (2001) Oligonucleotide detection using angle-dependent light scattering and fractal dimension analysis of gold-DNA aggregates. J. Am. Chem. Soc. 123:6734–6735.Google Scholar
  19. 19.
    Jin, R.C., Wu, G., Li, Z., Mirkin, C.A. and Schatz, G.C. (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125:643–654.Google Scholar
  20. 20.
    Miao, W. and Bard, A.J. (2003) Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2′-bipyridyl) ruthenium(II) labels. Anal. Chem. 75:5825–5834.Google Scholar
  21. 21.
    Palecek, E. (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature (Lond.) 188:656–657.Google Scholar
  22. 22.
    Hashimoto, K., Ito, K. and Ishimori, Y. (1994) Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal. Chem. 66:3830–3833.Google Scholar
  23. 23.
    Jelen, F., Erdem A. and Palecek, E. (2002) Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode. Bioelectrochemistry 55:165–167.Google Scholar
  24. 24.
    Takenaka, S., Yamashita, K., Takagi, M., Uto Y. and Kondo H. (2000) DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Anal. Chem. 72:1334–1341.Google Scholar
  25. 25.
    Fan, C., Plaxco, K.W. and Heeger, A.J. (2003) Electrochemical interrogation of conforma-tional changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. USA 100:9134–9137.Google Scholar
  26. 26.
    Shin, J.K., Kim, D.S., Park, H.J. and Lim, G. (2004) Detection of DNA and protein molecules using an FET-type biosensor with gold as a gate metal. Electroanalysis 16:1912–1918.Google Scholar
  27. 27.
    Nicolini, C., Erokhin, V., Facci, P., Guerzoni, S., Ross, A. and Pashkevitch, P. (1997) Quartz balance DNA sensor. Biosens. Bioelectron. 12:613–618.Google Scholar
  28. 28.
    De Lumley-Woodyear, T., Campbell, C.N. and Heller, A. (1996) Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide. J. Am. Chem. Soc. 118:5504–5505.Google Scholar
  29. 29.
    Caruana, D.J. and Heller, A. (1999) Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-μm-diameter microelectrode. J. Am. Chem. Soc. 121:769–774.Google Scholar
  30. 30.
    Ikebukuro, K., Kohiki, Y. and Sode, K. (2002) Amperometric DNA sensor using the pyrroquinoline quinone glucose dehydrogenase-avidin conjugate. Biosens. Bioelectron. 17: 1075–1080.Google Scholar
  31. 31.
    Patolsky, F., Weizmann Y. and Willner, I. (2002) Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. J. Am. Chem. Soc. 124:770–772.Google Scholar
  32. 32.
    Carpini, G., Lucarelli, F., Marrazza, G. and Mascini, M. (2004) Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens. Bioelectron. 20:167–175.Google Scholar
  33. 33.
    Patolsky, F., Lichtenstein, A. and Willner, I. (2003) Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes. Chem. Eur. J. 9:1137–1145.Google Scholar
  34. 34.
    Patolsky, F., Lichtenstein, A., Kotler, M. and Willner, I. (2001) Electronic transduction of polymerase or reverse transcriptase induced replication processes on surfaces: highly sensitive and specific detection of viral genomes. Angew. Chem. Int. Ed. 40:2261–2265.Google Scholar
  35. 35.
    Patolsky, F., Zayats, M., Katz, E. and Willner, I. (1999) Precipitation of an insoluble product on enzyme-monolayer-electrodes for biosensor applications: characterization by Faradaic impedance spectroscopy, cyclic voltammetry and microgravimetric quartz-crystal-microbal-ance analyses. Anal. Chem. 71:3171–3180.Google Scholar
  36. 36.
    Patolsky, F., Lichtenstein A. and Willner I. (2001) Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 19:253–257.Google Scholar
  37. 37.
    Crowther, J.R. (1995) ELISA: theory and practice. Humana, Totowa, NJ.Google Scholar
  38. 38.
    Douillard, J.Y. and Hoffmann, T. (1983) Enzyme-linked immunosorbent-assay for screening monoclonal-antibody production using enzyme-labeled second antibody. Methods Enzymol. 92E:168–174.Google Scholar
  39. 39.
    Shlyahovsky, B., Pavlov, V., Kaganovsky, L. and Willner, I. (2006) Biocatalytic evolution of a biocatalyst marker: towards the ultrasensitive detection of immunocomplexes and DNA analysis. Angew. Chem. Int. Ed. 45:4815–4819.Google Scholar
  40. 40.
    Pavlov, V., Shlyahovsky, B. and Willner, I. (2005) Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex. J. Am. Chem. Soc. 127:6522–6523.Google Scholar
  41. 41.
    Patolsky, F., Katz, E. and Willner, I. (2002) Amplified DNA detection by electrogenerated bio-chemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator. Angew. Chem. Int. Ed. 41:3398–3402.Google Scholar
  42. 42.
    Breaker, R.R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13:31–39.Google Scholar
  43. 43.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.Google Scholar
  44. 44.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment-RNA ligands to bacteriophage-T4 DNA polymerase. Science 249:505–510.Google Scholar
  45. 45.
    Travascio, P., Li, Y.F. and Sen, D. (1998) DNA-enhanced peroxidase activity of a DNA aptamer—hemin complex. Chem. Biol. 5:505–517.Google Scholar
  46. 46.
    Travascio, P., Bennet, A.J., Wang, D.Y. and Sen, D. (1999) A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem. Biol. 6:779–787.Google Scholar
  47. 47.
    Xiao, Y., Pavlov, V., Niazov, T., Dishon, A., Kotler, M. and Willner, I. (2004) Catalytic beacons for the detection of DNA and telomerase activity. J. Am. Chem. Soc. 126:7430–7431.Google Scholar
  48. 48.
    Pavlov, V., Xiao, Y., Gill, R., Dishon, A., Kotler, M. and Willner, I. (2004) Amplified chemi-luminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal. Chem. 76:2152–2156.Google Scholar
  49. 49.
    Niazov, T., Pavlov, V., Xiao, Y., Gill, R. and Willner, I. (2004) DNAzyme-functionalized Au nan-oparticles for the amplified detection of DNA or telomerase activity. Nano Lett. 4:1683–1687.Google Scholar
  50. 50.
    Fu A.H., Gu, W.W., Larabell, C. and Alivisatos, A.P. (2005) Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol. 15:568–575.Google Scholar
  51. 51.
    Medintz, I.L., Uyeda, H.T., Goldman, E.R. and Mattoussi, H. (2005) Quantum dot bioconju-gates for imaging, labelling and sensing. Nat. Mater. 4:435–446.Google Scholar
  52. 52.
    Hoshino, A., Fujioka, K., Manabe, N. and Yamaya, S. (2005) Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiol. Immunol. 49:461–470.Google Scholar
  53. 53.
    Patolsky, F., Gill., R., Weizmann, Y., Mokari, T., Banin, U. and Willner, I. (2003) Lighting-up the dynamics of telomerization and DNA replication by CdSe—ZnS quantum dots. J. Am. Chem. Soc. 125:13918–13919.Google Scholar
  54. 54.
    Polsky, R., Gill, R., Kaganovsky, L. and Willner, I. (2006) Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal. Chem. 78:2268–2271.Google Scholar
  55. 55.
    Gill, R., Polsky, R. and Willner, I. (2006) Pt nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. Small 2: 1037–1041.Google Scholar
  56. 56.
    Wang, J. (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1:1036–1043.Google Scholar
  57. 57.
    Park, S.J., Taton, T.A. and Mirkin, C.A., (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506.Google Scholar
  58. 58.
    Möller, R., Csáki, A., Köhler, J.M. and Fritzsche, W. (2001) Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement. Langmuir 17:5426–5430.Google Scholar
  59. 59.
    Urban, M., Möller R. and Fritzsche, W. (2003) A paralleled readout system for an electrical DNA-hybridization assay based on a microstructured electrode array. Rev. Sci. Instrum. 74:1077–1081.Google Scholar
  60. 60.
    Moreno-Hagelsieb, L., Lobert, P.E., Pampin, R., Bourgeois, D., Remacle J. and Flandre, D. (2004) Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes. Sens. Actuat. B 98:269–274.Google Scholar
  61. 61.
    Li, D., Yan, Y., Wieckowska, A. and Willner, I. (2008) Amplified electrochemical detection of DNA through the aggregation of Au nanoparticles on electrodes and the incorporation of methylene blue into the DNA-crosslinked structure. Chem. Commun. 3544–3546.Google Scholar
  62. 62.
    Taton, T.A., Mirkin, C.A. and Letsinger, R.L. (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760.Google Scholar
  63. 63.
    Taton, T.A., Lu, G.L. and Mirkin, C.A. (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc. 123:5164–5165.Google Scholar
  64. 64.
    Storhoff, J.J., Marla, S.S., Bao, P., Hagenow, S., Mehta, H., Lucas, A., Garimella, V., Patno, T., Buckingham, W., Cork, W. and Muller, U.R. (2004) Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens. Bioelectron. 19:875–883.Google Scholar
  65. 65.
    Bao, P., Huber, M., Wei, T.-F., Marla, S.S., Storhoff, J.J. and Müller, U.R. (2005) SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res. 33:e15.Google Scholar
  66. 66.
    Nam, J.-M., Stoeva, S.I. and Mirkin, C.A. (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. Am. Chem. Soc. 126:5932–5933.Google Scholar
  67. 67.
    Stoeva, S.I., Lee, J.-S., Thaxton, C.S. and Mirkin, C.A. (2006) Multiplexed DNA detection with biobarcoded nanoparticle probes. Angew. Chem. Int. Ed. 45:3303–3306.Google Scholar
  68. 68.
    Cai, H., Xu, Y., Zhu, N., He, P. and Fang, Y. (2002) An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst 127:803–809.Google Scholar
  69. 69.
    Wang, J., Xu, D., Kawde, A.-N. and Polsky, R. (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 73:5576–5581.Google Scholar
  70. 70.
    Wang, J., Liu, G. and Zhu, Q. (2003) Indium microrod tags for electrochemical detection of DNA hybridization. Anal. Chem. 75:6218–6222.Google Scholar
  71. 71.
    Martin, C.R. (1995) Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 28:61–68.Google Scholar
  72. 72.
    Zhu, N., Zhang, A., Wang, Q., He, P. and Fang, Y. (2004) Lead sulfide nanoparticle as oligonu-cleotides labels for electrochemical stripping detection of DNA hybridization. Electroanalysis 16:577–582.Google Scholar
  73. 73.
    Wang, J., Liu, G., Polsky, R. and Merkoçi, A. (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun. 4:722–726.Google Scholar
  74. 74.
    Wang, J., Liu, G. and Merkoçi, A. (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J. Am. Chem. Soc. 125:3214–3215.Google Scholar
  75. 75.
    Kerman, K., Saito, M., Morita, Y., Takamura, Y., Ozsoz, M. and Tamiya, E. (2004) Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal. Chem. 76:1877–1884.Google Scholar
  76. 76.
    Liu, G., Lee, T.M.H. and Wang, J. (2005) Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms, J. Am. Chem. Soc. 127:38–39.Google Scholar
  77. 77.
    Wang, J., Xu, D.K., Kawde, A.N. and Polsky, R. (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 73:5576–5581.Google Scholar
  78. 78.
    Wang, J., Polsky, R. and Xu, D.K. (2001) Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir 17:5739–5741.Google Scholar
  79. 79.
    Buttry, D.A. and Ward, M.D. (1992) Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92:1355–1379.Google Scholar
  80. 80.
    Zhou, X.C., O'Shea, S.J. and Li, S.F.Y. (2000) Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem. Commun. 11:953–954.Google Scholar
  81. 81.
    Patolsky, F., Ranjit, K.T., Lichtenstein, A. and Willner, I. (2000) Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem. Commun. 1025–1026.Google Scholar
  82. 82.
    Liu, T., Tang, J. and Jiang, L. (2004) The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem. Biophys. Res. Commun. 313:3–7.Google Scholar
  83. 83.
    Han, S., Lin, J., Satjapipat, M., Baca, A.J. and Zhou, F. (2001) A three-dimensional heterogeneous DNA sensing surface formed by attaching oligodeoxynucleotide-capped gold nanoparticles onto a gold-coated quartz crystal. Chem. Commun. 609–610.Google Scholar
  84. 84.
    Willner, I., Patolsky, F., Weizmann, Y. and Willner, B. (2002) Amplified detection of singlebase mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta 56:847–856.Google Scholar
  85. 85.
    Weizmann, Y., Patolsky, F. and Willner, I. (2001) Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst 126:1502–1504.Google Scholar
  86. 86.
    Wang, J., Polsky, R., Merkoçi, A. and Turner, K.L. (2003) “Electroactive beads” for ultrasensitive DNA detection. Langmuir 19:989–991.Google Scholar
  87. 87.
    Kawde, A.-N. and Wang, J. (2004) Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis 16:101–107.Google Scholar
  88. 88.
    Wang, J., Liu, G., Jan, M.R. and Zhu, Q. (2003) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem. Commun. 5: 1000–1004.Google Scholar
  89. 89.
    Patolsky, F., Lichtenstein, A. and Willner, I. (2001) Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. J. Am. Chem. Soc. 123:5194–5205.Google Scholar
  90. 90.
    Xu, Y., Cai, H., He, P.-G. and Fang, Y.-Z. (2004) Probing DNA hybridization by impedance measurement based on CdS-oligonucleotides. Electroanalysis 16:150–155.Google Scholar
  91. 91.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C. and Neumann, J.L. (2000) A DNA-fuelled molecular machine made of DNA. Nature (Lond.) 406:605–608.Google Scholar
  92. 92.
    Bath, J., Green, S.J. and Turberfield, A.J. (2005) A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Ed. 44:4358–4361.Google Scholar
  93. 93.
    Tian, Y. and Mao, C. (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126:11410–11411.Google Scholar
  94. 94.
    Tyagi, S. and Kramer, F.R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303–308.Google Scholar
  95. 95.
    Beyer, S. and Simmel, F.C. (2006) A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Res. 34:1581–1587.Google Scholar
  96. 96.
    Beissenhirtz, M. and Willner, I. (2006) DNA-based machines. Org. Biomol. Chem. 4: 3392–3401.Google Scholar
  97. 97.
    Bath, J., Andrew, J. and Turberfield, J. (2007) DNA nanomachines. Nature (Lond.) 2: 275–284.Google Scholar
  98. 98.
    Liedl, T., Sobey, T.L. and Simmel, F.C. (2007) DNA-based nanodevices. Nanotoday 2: 36–41.Google Scholar
  99. 99.
    Weizmann, Y., Beissenhirtz, M., Cheglakov, Z., Nowarski, R., Kotler, M. and Willner, I. (2006) A virus spotlighted by an autonomous DNA machine. Angew. Chem. Int. Ed. 45:7384–7388.Google Scholar
  100. 100.
    Beissenhirtz, M., Elnathan, R., Weizmann, Y. and Willner, I. (2007) The aggregation of Au nanoparticles by an autonomous DNA machine detects viruses. Small 3:375–379.Google Scholar
  101. 101.
    Cheglakov, Z., Weizmann, Y., Basnar, B., Willner, I. (2007) Diagnosing viruses by the rolling-circle amplified synthesis of DNAzymes. Org. Biomol. Chem. 5:223–225.Google Scholar
  102. 102.
    Tian, Y., He, Y. and Mao, C.D. (2006) Cascade signal amplification for DNA detection. ChemBioChem 7:1862–1864.Google Scholar
  103. 103.
    Weizmann, Y., Cheglakov, Z., Pavlov, V. and Willner, I. (2006) Autonomous fueled mechanical replication of nucleic acid templates for the amplified optical detection of DNA. Angew. Chem. Int. Ed. 45:2238–2242.Google Scholar
  104. 104.
    Weizmann, Y., Cheglakov, Z., Pavlov, V. and Willner, I. (2006) An autonomous fueled machine that replicates catalytic nucleic acid templates for the amplified optical analysis of DNA. Nat. Protocols 1:554–558.Google Scholar
  105. 105.
    Gerion, D., Chen, F., Kannan, B., Fu, A., Parak, W.J., Chen, D.J., Majumdar, A. and Alivisatos, A.P. (2003) Room-temperature single-nucleotide polymorphism and multial-lele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem. 75: 4766–4772.Google Scholar
  106. 106.
    Pathak, S., Choi, S.K., Arnheim, N. and Thompson, M.E. (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123:4103–4104.Google Scholar
  107. 107.
    Xiao, Y. and Barker, P.E. (2004) Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32:e28.Google Scholar
  108. 108.
    Kamat, P.V. (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111:2834–2860.Google Scholar
  109. 109.
    Adams, D.M., Brus, L., Chidsey, C.E.D., Creager, S., Creutz, C., Kagan, C.R., Kamat, P.V., Lieberman, M., Lindsay, S., Marcus, R.A., Metzger, R.M., Michel-Beyerle, M.E., Miller, J.R., Newton, M.D., Rolison, D.R., Sankey, O., Schanze, K.S., Yardley, J. and Zhu, X.Y. (2003) Charge transfer on the nanoscale: current status. J. Phys. Chem. B 107:6668–6697.Google Scholar
  110. 110.
    Willner, I., Patolsky, F. and Wasserman, J. (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew. Chem. Int. Ed. 40:1861–1864.Google Scholar
  111. 111.
    Gill, R., Patolsky, F., Katz, E. and Willner, I. (2005) Electrochemical control of the photo-current direction in intercalated DNA/CdS nanoparticle systems. Angew. Chem. Int. Ed. 44:4554–4557.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Itamar Willner
    • 1
  • Bella Shlyahovsky
    • 1
  • Bilha Willner
    • 1
  • Maya Zayats
    • 1
  1. 1.Institute of ChemistryThe Hebrew University of JerusalemIsrael

Personalised recommendations