Skip to main content

Colorimetric and Fluorescent Biosensors Based on Directed Assembly of Nanomaterials with Functional DNA

  • Chapter
Functional Nucleic Acids for Analytical Applications

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

This chapter reviews recent progress in the interface between functional nucleic acids and nanoscale science and technology, and its analytical applications. In particular, the use of metallic nanoparticles as the color reporting groups for the action (binding, catalysis, or both) of aptamers, DNAzymes, and aptazymes is described in detail. Because metallic nanoparticles possess high extinction coefficients and distance-dependent optical properties, they allow highly sensitive detections with minimal consumption of materials. The combination of quantum dots (QDs) with functional nucleic acids as fluorescent sensors is also described. The chapter starts with the design of colorimetric and fluorescent sensors responsive to single analytes, followed by sensors responsive to multiple analytes with controllable cooperativity and multiplex detection using both colorimetric and fluorescent signals in one pot, and ends by transferring solution-based detections into litmus paper type of tests, making them generally applicable and usable for a wide range of on-site and real-time analytical applications such as household tests, environmental monitoring, and clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E. and Cech, T.R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31:147–157.

    Article  CAS  Google Scholar 

  2. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S. (1983) The RNA moiety of ribonuclease p is the catalytic subunit of the enzyme. Cell 35:849–857.

    Article  CAS  Google Scholar 

  3. Winkler, W., Nahvi, A. and Breaker, R.R. (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature (Lond.) 419:952–956.

    Article  CAS  Google Scholar 

  4. Breaker, R.R. (2004) Natural and engineered nucleic acids as tools to explore biology. Nature (Lond.) 432:838.

    Article  CAS  Google Scholar 

  5. Breaker, R.R. and Joyce, G.F. (1994) A DNA enzyme that cleaves RNA. Chem. Biol. 1: 223–229

    Article  CAS  Google Scholar 

  6. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage t4 DNA polymerase. Science 249:505–510.

    Article  CAS  Google Scholar 

  7. Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.

    Article  CAS  Google Scholar 

  8. Wilson, D.S. and Szostak, J.W. (1999) In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68:611–647.

    Article  CAS  Google Scholar 

  9. Jayasena, S.D. (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45:1628–1650.

    CAS  Google Scholar 

  10. Tang, J. and Breaker, R.R. (1997) Rational design of allosteric ribozymes. Chem. Biol. 4: 453–459.

    Article  CAS  Google Scholar 

  11. Lu, Y. (2002) New transition metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chem. Eur. J. 8:4588–4596.

    Article  CAS  Google Scholar 

  12. Osborne, S.E. and Ellington, A.D. (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97:349–370.

    Article  CAS  Google Scholar 

  13. Breaker, R.R. (1997) In vitro selection of catalytic polynucleotides. Chem. Rev. 97:371–390.

    Article  CAS  Google Scholar 

  14. Sen, D. and Geyer, C.R. (1998) DNA enzymes. Curr. Opin. Chem. Biol. 2:680–687.

    Article  CAS  Google Scholar 

  15. Famulok, M. and Jenne, A. (1999) Catalysis based on nucleic acid structures. Top. Curr. Chem. 202:101–131.

    Article  CAS  Google Scholar 

  16. Joyce, G.F. (2004) Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 73: 791–836.

    Article  CAS  Google Scholar 

  17. Achenbach, J.C., Chiuman, W., Cruz, R.P.G. and Li, Y. (2004) DNAzymes: from creation in vitro to application in vivo. Curr. Pharm. Biotechnol. 5:312–336.

    Article  Google Scholar 

  18. Silverman, S.K. (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res. 33:6151–6163.

    Article  CAS  Google Scholar 

  19. Bruesehoff, P.J., Li, J., Augustine, A.J. and Lu, Y. (2002) Improving metal ion specificity during in vitro selection of catalytic DNA. Comb. Chem. High Throughput Screen. 5:327–335.

    CAS  Google Scholar 

  20. Stojanovic, M.N. and Landry, D.W. (2002) Aptamer-based colorimetric probe for cocaine. J. Am. Chem. Soc. 124:9678–9679.

    Article  CAS  Google Scholar 

  21. Yguerabide, J. and Yguerabide, E.E. (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. I. Theory. Anal. Biochem. 262:137–156.

    Article  CAS  Google Scholar 

  22. Bohren, C.F. and Huffman, D.R. (1993) Absorption and scattering of light by small particles. Wiley, New York.

    Google Scholar 

  23. Jin, R., Wu, G., Li, Z., Mirkin, C.A. and Schatz, G.C. (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125:1643–1654.

    Article  CAS  Google Scholar 

  24. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. and Storhoff, J.J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature (Lond.) 382:607–609.

    Article  CAS  Google Scholar 

  25. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. and Mirkin, C.A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1080.

    Article  CAS  Google Scholar 

  26. Rosi, N.L. and Mirkin, C.A. (2005) Nanostructures in biodiagnostics. Chem. Rev. 105: 1547–1562.

    Article  CAS  Google Scholar 

  27. Han, M., Gao, X., Su, J.Z. and Nie, S. (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19:631–635.

    Article  CAS  Google Scholar 

  28. Alivisatos, A.P., Gu, W. and Larabell, C. (2005) Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7:55–76.

    Article  CAS  Google Scholar 

  29. Medintz, I.L., Uyeda, H.T., Goldman, E.R. and Mattoussi, H. (2005) Quantum dot bioconju-gates for imaging, labelling and sensing. Nat. Mater. 4:435–446.

    Article  CAS  Google Scholar 

  30. Li, J., Zheng, W., Kwon, A.H. and Lu, Y. (2000) In vitro selection and characterization of a highly efficient Zn(ii)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28: 481–488.

    Article  CAS  Google Scholar 

  31. Santoro, S.W., Joyce, G.F., Sakthivel, K., Gramatikova, S. and Barbas, C.F., III. (2000) RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122: 2433–2439.

    Article  CAS  Google Scholar 

  32. Carmi, N., Shultz, L.A. and Breaker, R.R. (1996) In vitro selection of self-cleaving DNAs. Chem. Biol. 3:1039–1046.

    Article  CAS  Google Scholar 

  33. Carmi, N., Balkhi, H.R. and Breaker, R.R. (1998) Cleaving DNA with DNA. Proc. Natl. Acad. Sci. USA 95:2233–2237.

    Article  CAS  Google Scholar 

  34. Mei, S.H.J., Liu, Z., Brennan, J.D. and Li, Y. (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J. Am. Chem. Soc. 125:412–420.

    Article  CAS  Google Scholar 

  35. Liu, J., Brown, A.K., Meng, X., Cropek, D.M., Istok, J.D., Watson, D.B. and Lu, Y. (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and million-fold selectivity. Proc. Natl. Acad. Sci. USA 104:2056.

    Article  CAS  Google Scholar 

  36. Brown, A.K., Li, J., Pavot, C.M.B. and Lu, Y. (2003) A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42:7152–7161.

    Article  CAS  Google Scholar 

  37. Liu, J. and Lu, Y. (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125:6642–6643.

    Article  CAS  Google Scholar 

  38. Liu, J. and Lu, Y. (2004) Optimization of a Pb2+-directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+. Chem. Mater. 16:3231–3238.

    Article  CAS  Google Scholar 

  39. Liu, J. and Lu, Y. (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 126: 12298–12305.

    Article  CAS  Google Scholar 

  40. Storhoff, J.J., Lazarides, A.A., Mucic, R.C., Mirkin, C.A., Letsinger, R.L. and Schatz, G.C. (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122:4640–4650.

    Article  CAS  Google Scholar 

  41. Liu, J. and Lu, Y. (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J. Am. Chem. Soc. 127:12677–12683.

    Article  CAS  Google Scholar 

  42. Liu, J. and Lu, Y. (2006) Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Org. Biomol. Chem. 4:3435–3441.

    Article  CAS  Google Scholar 

  43. Geyer, C.R. and Sen, D. (1997) Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem. Biol. 4:579–593.

    Article  CAS  Google Scholar 

  44. Roth, A. and Breaker, R.R. (1998) An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl. Acad. Sci. USA 95:6027–6031.

    Article  CAS  Google Scholar 

  45. Breaker, R.R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13:31–39.

    Article  CAS  Google Scholar 

  46. Wang, D.Y., Lai, B.H.Y. and Sen, D. (2002) A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. J. Mol. Biol. 318:33–43.

    Article  CAS  Google Scholar 

  47. Huizenga, D.E. and Szostak, J.W. (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665.

    Article  CAS  Google Scholar 

  48. Liu, J. and Lu, Y. (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem. 76:1627–1632.

    Article  CAS  Google Scholar 

  49. Ho, H.-A. and Leclerc, M. (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc. 126:1384–1387.

    Article  CAS  Google Scholar 

  50. Ho, H.-A., Bera-Aberem, M. and Leclerc, M. (2005) Optical sensors based on hybrid DNA/ conjugated polymer complexes. Chem. Eur. J 11:1718–1724.

    Article  CAS  Google Scholar 

  51. Dore, K., Dubus, S., Ho, H.-A., Levesque, I., Brunette, M., Corbeil, G., Boissinot, M., Boivin, G., Bergeron, M.G., Boudreau, D. and Leclerc, M. (2004) Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J. Am. Chem. Soc. 126:4240–4244.

    Article  CAS  Google Scholar 

  52. Pavlov, V., Xiao, Y., Shlyahovsky, B. and Willner, I. (2004) Aptamer-functionalized Au nanopar-ticles for the amplified optical detection of thrombin. J. Am. Chem. Soc. 126:11768–11769.

    Article  CAS  Google Scholar 

  53. Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E. and Tulinsky, A. (1993) The structure of a-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J. Biol. Chem. 268:17651–17654.

    CAS  Google Scholar 

  54. Huang, C.-C., Huang, Y.-F., Cao, Z., Tan, W. and Chang, H.-T. (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem. 77:5735–5741.

    Article  CAS  Google Scholar 

  55. Liu, J. and Lu, Y. (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 45:90–94.

    Article  CAS  Google Scholar 

  56. Nutiu, R. and Li, Y. (2003) Structure-switching signaling aptamers. J. Am. Chem. Soc. 125: 4771–4778.

    Article  CAS  Google Scholar 

  57. Nutiu, R., Mei, S., Liu, Z. and Li, Y. (2004) Engineering DNA aptamers and DNA enzymes with fluorescence-signaling properties. Pure Appl. Chem. 76:1547–1561.

    Article  CAS  Google Scholar 

  58. Nutiu, R. and Li, Y. (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chem. Eur. J. 10:1868–1876.

    Article  CAS  Google Scholar 

  59. Nutiu, R. and Li, Y. (2005) In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed. 44:1061–1065; S1061/1–S1061/3.

    Article  CAS  Google Scholar 

  60. Nutiu, R. and Li, Y. (2005) Aptamers with fluorescence-signaling properties. Methods 37:16–25.

    Article  CAS  Google Scholar 

  61. Liu, J. and Lu, Y. (2006) Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv. Mater. 18:1667–1671.

    Article  CAS  Google Scholar 

  62. Levy, M., Cater, S.F. and Ellington, A.D. (2005) Quantum-dot aptamer beacons for the detection of proteins. ChemBioChem 6:2163–2166.

    Article  CAS  Google Scholar 

  63. Choi, J.H., Chen, K.H. and Strano, M.S. (2006) Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. J. Am. Chem. Soc. 128:15584–15585.

    Article  CAS  Google Scholar 

  64. Dwarakanath, S., Bruno, J.G., Shastry, A., Phillips, T., John, A.A., Kumar, A. and Stephenson, L.D. (2004) Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem. Biophys. Res. Commun. 325:739–743.

    Article  CAS  Google Scholar 

  65. Shieh, F., Lavery, L., Chu, C.T., Richards-Kortum, R., Ellington, A.D. and Korgel, B.A. (2005) Semiconductor nanocrystal-aptamer bioconjugate probes for specific prostate carcinoma cell targeting. Proc. SPIE (Int. Soc. Opt. Eng.) 5705:159–165.

    CAS  Google Scholar 

  66. Chu, T.C., Shieh, F., Lavery, L.A., Levy, M., Richards-Kortum, R., Korgel, B.A. and Ellington, A.D. (2006) Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens. Bioelectron. 21:1859–1866.

    Article  CAS  Google Scholar 

  67. Mitchell, G.P., Mirkin, C.A. and Letsinger, R.L. (1999) Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121:8122–8123.

    Article  CAS  Google Scholar 

  68. Gueroui, Z. and Libchaber, A. (2004) Single-molecule measurements of gold-quenched quantum dots. Phys. Rev. Lett. 93:166108/1–166108/4.

    Article  CAS  Google Scholar 

  69. Wargnier, R., Baranov, A.V., Maslov, V.G., Stsiapura, V., Artemyev, M., Pluot, M., Sukhanova, A. and Nabiev, I. (2004) Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett. 4:451–457.

    Article  CAS  Google Scholar 

  70. Oh, E., Hong, M.-Y., Lee, D., Nam, S.-H., Yoon, H.C. and Kim, H.-S. (2005) Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc. 127:3270–3271.

    Article  CAS  Google Scholar 

  71. Dyadyusha, L., Yin, H., Jaiswal, S., Brown, T., Baumberg, J.J., Booy, F.P. and Melvin, T. (2005) Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem. Commun. 25:3201–3203.

    Article  Google Scholar 

  72. Sato, K., Hosokawa, K. and Maeda, M. (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 125:8102–8103.

    Article  CAS  Google Scholar 

  73. Zhao, W., Chiuman, W., Brook, M.A. and Li, Y. (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem 8:727–731.

    Article  CAS  Google Scholar 

  74. Li, H. and Rothberg, L. (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 101: 14036–14039.

    Article  CAS  Google Scholar 

  75. Li, H. and Rothberg, L.J. (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc. 126: 10958–10961.

    Article  CAS  Google Scholar 

  76. Li, H. and Rothberg, L.J. (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Chem. 76:5414–5417.

    Article  CAS  Google Scholar 

  77. Wang, L., Liu, X., Hu, X., Song, S. and Fan, C. (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun. 28:3780–3782.

    Article  Google Scholar 

  78. Glynou, K., Ioannou, P.C., Christopoulos, T.K. and Syriopoulou, V. (2003) Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal. Chem. 75:4155–4160.

    Article  CAS  Google Scholar 

  79. Liu, J., Mazumdar, D. and Lu, Y. (2006) A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. 45: 7955–7959.

    Article  CAS  Google Scholar 

  80. Famulok, M. and Mayer, G. (2006) Chemical biology: aptamers in nanoland. Nature (Lond.) 439:666–669.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank other Lu group members for helpful discussions and Ms. Natasha Yeung for proofreading the chapter. The Lu group research described in this chapter has been generously supported by the U.S. Department of Energy, National Science Foundation, Department of Defense, Department of Housing and Urban Development, and National Institute of Health.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, J., Lu, Y. (2009). Colorimetric and Fluorescent Biosensors Based on Directed Assembly of Nanomaterials with Functional DNA. In: Yingfu, L., Yi, L. (eds) Functional Nucleic Acids for Analytical Applications. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73711-9_6

Download citation

Publish with us

Policies and ethics