Fluorescent Aptamer Sensors

Part of the Integrated Analytical Systems book series (ANASYS)


Aptamers are single-stranded nucleic acid probes that can be evolved to have high specificity and affinity for different targets. These targets include biomar-ker proteins, small molecules, and even whole live cells that express a variety of surface proteins of interest. Aptamers offer several advantages over protein-based molecular probes such as low immunogenic activity, flexible modification, and in vitro synthesis. In addition, aptamers used as molecular probes can be made with easy signaling for binding with their corresponding targets. There are a few different fluorescence-based signal transduction mechanisms, such as direct fluorophore labeling, fluorescence resonance energy transfer (FRET), fluorescence quenching, fluorescence anisotropy, and light-switching excimers. These signaling processes in combination with various labeling strategies of nucleic acid aptamers contribute to simple, rapid, sensitive, and selective biological assays. In this chapter, we discuss the optical signaling of aptamers for single proteins such as α-thrombin and platelet-derived growth factor (PDGF). We also present detailed discussion about fluorescent aptamers developed from cell-based systematic evolution of ligands by exponential enrichment (SELEX) for the recognition of different target tumor cells.


Acute Lymphoblastic Leukemia Fluorescence Resonance Energy Transfer Fluorescence Anisotropy Signal Transduction Mechanism Aptamer Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank our group members, whose work is reported here. We also thank the NIH and NSF for grants for financial support.


  1. 1.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.CrossRefGoogle Scholar
  2. 2.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment — RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249:505–510.CrossRefGoogle Scholar
  3. 3.
    Shangguan, D., Li, Y., Tang, Z., Cao, Z.C., Chen, H.W., Mallikaratchy, P., Sefah, K., Yang, C.J. and Tan, W. (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103:11838–11843.CrossRefGoogle Scholar
  4. 4.
    Li, J., Fang, X. and Tan, W. (2002) Molecular aptamer beacons for real-time protein recognition. Biochem. Biophys. Res. Commun. 292:31–40.CrossRefGoogle Scholar
  5. 5.
    Cao, Z. and Tan, W. (2005) Molecular aptamers for real-time protein—protein interaction study. Chem. Eur. J. 11:4502–4508.CrossRefGoogle Scholar
  6. 6.
    Fang, X., Sen, A., Vicens, M. and Tan, W. (2003) Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem 4:829–834.CrossRefGoogle Scholar
  7. 7.
    Nutiu, R. and Li, Y. (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chem. Eur. J. 10:1868–1876.CrossRefGoogle Scholar
  8. 8.
    Fang, X., Cao, Z.C., Beck, T. and Tan, W. (2001) Molecular aptamer for real-time onco-protein platelet-derived growth factor monitoring by fluorescence anisotropy. Anal. Chem. 73:5752–5757.CrossRefGoogle Scholar
  9. 9.
    Potyrailo, R.A., Conrad, R.C., Ellington, A.D. and Hieftje, G.M. (1998) Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem. 70:3419–3425.CrossRefGoogle Scholar
  10. 10.
    Yang, C.J., Jockusch, S., Vicens, M., Turro, N.J. and Tan, W. (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc. Natl. Acad. Sci. USA 102:17278–17283.CrossRefGoogle Scholar
  11. 11.
    Mallikaratchy, P., Stahelin, R.V., Cao, Z.C., Cho, W. and Tan, W. (2006) Selection of DNA ligands for protein kinase C-delta. Chem. Commun. 30:3229–3231.CrossRefGoogle Scholar
  12. 12.
    Nutiu, R. and Li, Y. (2005) Aptamers with fluorescence-signaling properties. Methods 37:16–25.CrossRefGoogle Scholar
  13. 13.
    Morris, K.N., Jensen, K.B., Julin, C.M., Weil, M. and Gold, L. (1998) High affinity ligands from in vitro selection: complex targets. Proc. Natl. Acad. Sci. USA 95:2902–2907.CrossRefGoogle Scholar
  14. 14.
    Blank, M., Weinschenk, T., Priemer, M. and Schluesener, H. (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels: selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276:16464–16468.CrossRefGoogle Scholar
  15. 15.
    Daniels, D.A., Chen, H., Hicke, B.J., Swiderek, K.M. and Gold, L. (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA 100:15416–15421.CrossRefGoogle Scholar
  16. 16.
    Wang, C., Zhang, M., Yang, G., Zhang, D., Ding, H., Wang, H., Fan, M., Shen, B. and Shao, N. (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J. Biotechnol. 102:15–22.CrossRefGoogle Scholar
  17. 17.
    Chen, H., Medley, C., Sefah, K., Shangguan, D., Tang, Z., Meng, L., Smith, J., and Tan, W. (2008) Molecular recognition of small-cell lung cancer cells using aptamers. CHEMMEDCHEM 3:991–1001.CrossRefGoogle Scholar
  18. 18.
    Shangguan, D., Meng, L., Cao, Z., Xiao, Z., Fang, X., Li, Y., Cardona, D., Witek, R., Liu, C., and Tan, W. (2008) Identification of liver cancer-specific aptamers using whole live cells. Analytical Chemistry 80: 721–728.CrossRefGoogle Scholar
  19. 19.
    Shangguan D., Cao, Z., Meng, L., Mallikaratchy, P., Sefah, K., Wang, H., Li, Y., and Tan, W. (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. Journal of Proteome Research 7: 2133–2139.CrossRefGoogle Scholar
  20. 20.
    Mossie, K., Jallal, B., Alves, F., Sures, I., Plowman, G. and Ullrich, A. (1995) Colon-carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene 11:2179–2184.Google Scholar
  21. 21.
    Mallikaratchy, P., Tang, Z., Kwame, S., Meng, L., Shangguan, D., and Tan, W. (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells. Molecular & Cellular Proteomics 6: 2230–2238.CrossRefGoogle Scholar
  22. 22.
    Tyagi, S. and Kramer, F.R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303–308.CrossRefGoogle Scholar
  23. 23.
    Kostrikis, L.G., Tyagi, S., Mhlanga, M.M., Ho, D.D. and Kramer, F.R. (1998) Molecular beacons: spectral genotyping of human alleles. Science 279:1228–1229.CrossRefGoogle Scholar
  24. 24.
    Giesendorf, B.A.J., Vet, J.A.M., Tyagi, S., Mensink, E.J.M.G., Trijbels, F.J.M. and Blom, H.J. (1998) Molecular beacons: a new approach for semiautomated mutation analysis. Clin. Chem. 44:482–486.Google Scholar
  25. 25.
    Manganelli, R., Dubnau, E., Tyagi, S., Kramer, F.R. and Smith, I. (1999) Differential expression of 10 sigma factor genes in mycobacterium tuberculosis. Mol. Microbiol. 31:715–724.CrossRefGoogle Scholar
  26. 26.
    Matsuo, T. (1998) In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochem. Biophys. Acta Gen. Subj. 1379:178–184.CrossRefGoogle Scholar
  27. 27.
    Sokol, D.L., Zhang, X.L., Lu, P.Z. and Gewitz, A.M. (1998) Real time detection of DNA RNA hybridization in living cells. Proc. Natl. Acad. Sci. USA 95:11538–11543.CrossRefGoogle Scholar
  28. 28.
    Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature (Lond.) 355:564–566.CrossRefGoogle Scholar
  29. 29.
    Baldrich, E. and O'Sullivan, C.K. (2005) Ability of thrombin to act as molecular chaperone, inducing formation of quadruplex structure of thrombin-binding aptamer. Anal. Biochem. 341:194–197.CrossRefGoogle Scholar
  30. 30.
    Fialova, M., Kypr, J. and Vorlickova, M. (2006) The thrombin binding aptamer GGTTGGTGTGGTTGG forms a bimolecular guanine tetraplex. Biochem. Biophys. Res. Commun. 344:50–54.CrossRefGoogle Scholar
  31. 31.
    Mayer, G., Krock, L., Mikat, V., Engeser, M. and Heckel, A. (2005) Light-induced formation of G-quadruplex DNA secondary structures. ChemBioChem 6:1966–1970.CrossRefGoogle Scholar
  32. 32.
    Nagatoishi, S., Nojima, T., Galezowska, E., Juskowiak, B. and Takenaka, S. (2006) G quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of the potassium ion. ChemBioChem 7:1730–1737.CrossRefGoogle Scholar
  33. 33.
    Huang, C., Cao, Z., Chang, H. and Tan, W. (2004) Protein–protein interaction studies based on molecular aptamers by affinity capillary electrophoresis. Anal. Chem. 76:6973–6981.CrossRefGoogle Scholar
  34. 34.
    Hamaguchi, N., Ellington, A. and Stanton, M. (2001) Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294:126–131.CrossRefGoogle Scholar
  35. 35.
    Zhang, P., Beck, T. and Tan, W. (2001) Design of a molecular beacon DNA probe with two fluorophores. Angew. Chem. Int. Ed. 40:402–405.CrossRefGoogle Scholar
  36. 36.
    Wang, J., Cao, Z., Jiang, Y., Zhou, C., Fang, X. and Tan, W. (2005) Molecular signaling aptamers for real-time fluorescence analysis of protein. IUBMB LIFE 57:123–128.CrossRefGoogle Scholar
  37. 37.
    Oefner, C., Darcy, A., Winkler, F.K., Eggimann, B. and Hosang, M. (1992) Crystal-structure of human platelet-derived growth factor-BB. EMBO J. 11:3921–3926.Google Scholar
  38. 38.
    Bergsten, E., Uutela, M., Li, X.R., Pietras, K., Ostman, A., Heldin, C.H., Alitalo, K. and Eriksson, U. (2001) PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat. Cell Biol. 3:512–516.CrossRefGoogle Scholar
  39. 39.
    Heldin, C.H., Johnsson, A., Betsholtz, C. and Westermark, B. (1986) Platelet-derived growth-factor-structure, function and possible role in cell-transformation. Biol. Chem. Hoppe-Seyler 367:265–265.Google Scholar
  40. 40.
    Peres, R., Betsholtz, C., Westermark, B. and Heldin, C.H. (1987) Frequent expression of growth-factors for mesenchymal cells in human mammary-carcinoma cell-lines. Cancer Res. 47:3425–3429.Google Scholar
  41. 41.
    Green, L.S., Jellinek, D., Bell, C., Beebe, L.A., Feistner, B.D., Gill, S.C., Jucker, F.M. and Janjic, N. (1996) Nuclease-resistant nucleic acid ligands to vascular permeability factor vascular endothelial growth factor (vol. 2, pp 683, 1995). Chem. Biol. 3:960.CrossRefGoogle Scholar
  42. 42.
    Birks, J.B. and Leite, M.S.S.C.P. (1970) Energy transfer in organic systems. 8. Quenching of naphthalene fluorescence by biacetyl. J. Phys. Part B Atom. Mol. Phys. 3:417.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Research at the Bio/Nano Interface, Department of ChemistryShands Cancer Center, University of Florida Genetics Institute and McKnight Brain Institute, University of FloridaUSA

Personalised recommendations