Artificial Functional Nucleic Acids: Aptamers, Ribozymes, and Deoxyribozymes Identified by In Vitro Selection

  • Scott K. Silverman
Part of the Integrated Analytical Systems book series (ANASYS)


The discovery of natural RNA catalysts (ribozymes) inspired the use of in vitro selection methodology to develop artificial functional nucleic acids (FNAs). In vitro selection is the experimental process by which large random-sequence pools of RNA or DNA are used as the starting point to identify particular nucleic acid sequences that have desired functions. When this function is binding of a molecular target, the functional nucleic acid is an RNA or DNA “aptamer.” When this function is catalysis of a chemical reaction, the functional nucleic acid is a “ribozyme” or “deoxyribozyme”; these are collectively termed “nucleic acid enzymes.” Since the first in vitro selection experiments in 1990, a wide variety of aptamers and nucleic acid enzymes have been identified. This chapter describes how aptamers, ribozymes, and deoxyribozymes are obtained by in vitro selection methodologies. Also addressed are the scope of the molecular targets that are bound and the chemical reactions that are catalyzed. Biochemical and structural characterizations of aptamers and nucleic acid enzymes are discussed. A final section introduces aptazymes, which are allosterically regulated nucleic acid enzymes.


  1. 1.
    Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.Google Scholar
  2. 2.
    Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E. and Cech, T.R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157.Google Scholar
  3. 3.
    Bass, B.L. and Cech, T.R. (1984) Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. Nature (Lond.) 308:820–826.Google Scholar
  4. 4.
    O'Malley, R.P., Mariano, T.M., Siekierka, J. and Mathews, M.B. (1986) A mechanism for the control of protein synthesis by adenovirus VA RNAI. Cell 44:391–400.Google Scholar
  5. 5.
    Cullen, B.R. and Greene, W.C. (1989) Regulatory pathways governing HIV-1 replication. Cell 58:423–426.Google Scholar
  6. 6.
    Marciniak, R.A., Garcia-Blanco, M.A. and Sharp, P.A. (1990) Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 87:3624–3628.Google Scholar
  7. 7.
    Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.Google Scholar
  8. 8.
    Sullenger, B.A., Gallardo, H.F., Ungers, G.E. and Gilboa, E. (1990) Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63:601–608.Google Scholar
  9. 9.
    Robertson, D.L. and Joyce, G.F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature (Lond.) 344:467–468.Google Scholar
  10. 10.
    Hybarger, G., Bynum, J., Williams, R.F., Valdes, J.J. and Chambers, J.P. (2006) A microflu-idic SELEX prototype. Anal. Bioanal. Chem. 384:191–198.Google Scholar
  11. 11.
    Gold, L., Polisky, B., Uhlenbeck, O. and Yarus, M. (1995) Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64:763–797.Google Scholar
  12. 12.
    Breaker, R.R. (1997) In vitro selection of catalytic polynucleotides. Chem. Rev. 97: 371–390.Google Scholar
  13. 13.
    Osborne, S.E. and Ellington, A.D. (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97:349–370.Google Scholar
  14. 14.
    Wilson, D.S. and Szostak, J.W. (1999) In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68:611–647.Google Scholar
  15. 15.
    Joyce, G.F. (2004) Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 73:791–836.Google Scholar
  16. 16.
    Sabeti, P.C., Unrau, P.J. and Bartel, D.P. (1997) Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem. Biol. 4:767–774.Google Scholar
  17. 17.
    Lozupone, C., Changayil, S., Majerfeld, I. and Yarus, M. (2003) Selection of the simplest RNA that binds isoleucine. RNA 9:1315–1322.Google Scholar
  18. 18.
    Legiewicz, M., Lozupone, C., Knight, R. and Yarus, M. (2005) Size, constant sequences, and optimal selection. RNA 11:1701–1709.Google Scholar
  19. 19.
    Majerfeld, I. and Yarus, M. (1994) An RNA pocket for an aliphatic hydrophobe. Nat. Struct. Biol. 1:287–292.Google Scholar
  20. 20.
    Connell, G.J. and Yarus, M. (1994) RNAs with dual specificity and dual RNAs with similar specificity. Science 264:1137–1141.Google Scholar
  21. 21.
    Missailidis, S., Thomaidou, D., Borbas, K.E. and Price, M.R. (2005) Selection of aptamers with high affinity and high specificity against C595, an anti-MUC1 IgG3 monoclonal antibody, for antibody targeting. J. Immunol. Methods 296:45–62.Google Scholar
  22. 22.
    Ferreira, C.S., Matthews, C.S. and Missailidis, S. (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol. 27:289–301.Google Scholar
  23. 23.
    Hale, S.P. and Schimmel, P. (1996) Protein synthesis editing by a DNA aptamer. Proc. Natl. Acad. Sci. USA 93:2755–2758.Google Scholar
  24. 24.
    Sassanfar, M. and Szostak, J.W. (1993) An RNA motif that binds ATP. Nature (Lond.) 364:550–553.Google Scholar
  25. 25.
    Famulok, M. and Szostak, J.W. (1992) Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J. Am. Chem. Soc. 114:3990–3991.Google Scholar
  26. 26.
    Ellington, A.D. and Szostak, J.W. (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature (Lond.) 355:850–852.Google Scholar
  27. 27.
    Conrad, R., Keranen, L.M., Ellington, A.D. and Newton, A.C. (1994) Isozyme-specific inhibition of protein kinase C by RNA aptamers. J. Biol. Chem. 269:32051–32054.Google Scholar
  28. 28.
    Tian, Y., Adya, N., Wagner, S., Giam, C.Z., Green, M.R. and Ellington, A.D. (1995) Dissecting protein:protein interactions between transcription factors with an RNA aptamer. RNA 1:317–326.Google Scholar
  29. 29.
    Kumar, P.K., Machida, K., Urvil, P.T., Kakiuchi, N., Vishnuvardhan, D., Shimotohno, K., Taira, K. and Nishikawa, S. (1997) Isolation of RNA aptamers specific to the NS3 protein of hepatitis C virus from a pool of completely random RNA. Virology 237:270–282.Google Scholar
  30. 30.
    Yamamoto, R., Katahira, M., Nishikawa, S., Baba, T., Taira, K. and Kumar, P.K. (2000) A novel RNA motif that binds efficiently and specifically to the Tat protein of HIV and inhibits the trans-activation by Tat of transcription in vitro and in vivo. Genes Cells 5:371–388.Google Scholar
  31. 31.
    Seiwert, S.D., Stines Nahreini, T., Aigner, S., Ahn, N.G. and Uhlenbeck, O.C. (2000) RNA aptamers as pathway-specific MAP kinase inhibitors. Chem. Biol. 7:833–843.Google Scholar
  32. 32.
    Li, Y., Geyer, C.R. and Sen, D. (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35:6911–6922.Google Scholar
  33. 33.
    Conrad, R.C., Giver, L., Tian, Y. and Ellington, A.D. (1996) In vitro selection of nucleic acid aptamers that bind proteins. Methods Enzymol. 267:336–367.Google Scholar
  34. 34.
    Knight, R. and Yarus, M. (2003) Finding specific RNA motifs: function in a zeptomole world? RNA 9:218–230.Google Scholar
  35. 35.
    Gyllensten, U.B. and Erlich, H.A. (1988) Generation of single-stranded DNA by the polymer-ase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA 85:7652–7656.Google Scholar
  36. 36.
    Wilson, C. and Szostak, J.W. (1998) Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem. Biol. 5:609–617.Google Scholar
  37. 37.
    Yang, Q., Goldstein, I.J., Mei, H.Y. and Engelke, D.R. (1998) DNA ligands that bind tightly and selectively to cellobiose. Proc. Natl. Acad. Sci. USA 95:5462–5467.Google Scholar
  38. 38.
    Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature (Lond.) 355:564–566.Google Scholar
  39. 39.
    Harada, K. and Frankel, A.D. (1995) Identification of two novel arginine binding DNAs. EMBO J. 14:5798–5811.Google Scholar
  40. 40.
    Kato, T., Takemura, T., Yano, K., Ikebukuro, K. and Karube, I. (2000) In vitro selection of DNA aptamers which bind to cholic acid. Biochem. Biophys. Acta 1493:12–18.Google Scholar
  41. 41.
    Blank, M., Weinschenk, T., Priemer, M. and Schluesener, H. (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276:16464–16468.Google Scholar
  42. 42.
    Vianini, E., Palumbo, M. and Gatto, B. (2001) In vitro selection of DNA aptamers that bind L-tyrosinamide. Bioorg. Med. Chem. 9:2543–2548.Google Scholar
  43. 43.
    Green, L.S., Jellinek, D., Jenison, R., Ostman, A., Heldin, C.H. and Janjic, N. (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35:14413–14424.Google Scholar
  44. 44.
    Wiegand, T.W., Williams, P.B., Dreskin, S.C., Jouvin, M.H., Kinet, J.P. and Tasset, D. (1996) High-affinity oligonucleotide ligands to human IgE inhibit binding to Fcε receptor I. J. Immunol. 157:221–230.Google Scholar
  45. 45.
    Hicke, B.J., Watson, S.R., Koenig, A., Lynott, C.K., Bargatze, R.F., Chang, Y.F., Ringquist, S., Moon-McDermott, L., Jennings, S., Fitzwater, T., Han, H.L., Varki, N., Albinana, I., Willis, M.C., Varki, A. and Parma, D. (1996) DNA aptamers block L-selectin function in vivo. Inhibition of human lymphocyte trafficking in SCID mice. J. Clin. Invest. 98:2688–2692.Google Scholar
  46. 46.
    Charlton, J., Kirschenheuter, G.P. and Smith, D. (1997) Highly potent irreversible inhibitors of neutrophil elastase generated by selection from a randomized DNA-valine phosphonate library. Biochemistry 36:3018–3026.Google Scholar
  47. 47.
    Daniels, D.A., Chen, H., Hicke, B.J., Swiderek, K.M. and Gold, L. (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA 100:15416–15421.Google Scholar
  48. 48.
    Ciesiolka, J., Illangasekare, M., Majerfeld, I., Nickles, T., Welch, M., Yarus, M. and Zinnen, S. (1996) Affinity selection-amplification from randomized ribooligonucleotide pools. Methods Enzymol. 267:315–335.Google Scholar
  49. 49.
    Tuerk, C., MacDougal, S. and Gold, L. (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 89:6988–6992.Google Scholar
  50. 50.
    Schneider, D., Tuerk, C. and Gold, L. (1992) Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J. Mol. Biol. 228:862–869.Google Scholar
  51. 51.
    Giver, L., Bartel, D., Zapp, M., Pawul, A., Green, M. and Ellington, A.D. (1993) Selective optimization of the Rev-binding element of HIV-1. Nucleic Acids Res. 21:5509–5516.Google Scholar
  52. 52.
    Jellinek, D., Green, L.S., Bell, C. and Janjic, N. (1994) Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry 33:10450–10456.Google Scholar
  53. 53.
    Jellinek, D., Green, L.S., Bell, C., Lynott, C.K., Gill, N., Vargeese, C., Kirschenheuter, G., McGee, D.P., Abesinghe, P., Pieken, W.A. et al. (1995) Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34:11363–11372.Google Scholar
  54. 54.
    Nazarenko, I.A. and Uhlenbeck, O.C. (1995) Defining a smaller RNA substrate for elongation factor Tu. Biochemistry 34:2545–2552.Google Scholar
  55. 55.
    Allen, P., Worland, S. and Gold, L. (1995) Isolation of high-affinity RNA ligands to HIV-1 integrase from a random pool. Virology 209:327–336.Google Scholar
  56. 56.
    Binkley, J., Allen, P., Brown, D.M., Green, L., Tuerk, C. and Gold, L. (1995) RNA ligands to human nerve growth factor. Nucleic Acids Res. 23:3198–3205.Google Scholar
  57. 57.
    Kubik, M.F., Bell, C., Fitzwater, T., Watson, S.R. and Tasset, D.M. (1997) Isolation and characterization of 2′-fluoro-, 2′-amino-, and 2′-fluoro-/amino-modified RNA ligands to human IFN-gamma that inhibit receptor binding. J. Immunol. 159:259–267.Google Scholar
  58. 58.
    Klug, S.J., Huttenhofer, A., Kromayer, M. and Famulok, M. (1997) In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. Proc. Natl. Acad. Sci. USA 94:6676–6681.Google Scholar
  59. 59.
    Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson-Welsh, L. and Janjic, N. (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273:20556–20567.Google Scholar
  60. 60.
    Bridonneau, P., Chang, Y.F., O'Connell, D., Gill, S.C., Snyder, D.W., Johnson, L., Goodson, T., Jr., Herron, D.K. and Parma, D.H. (1998) High-affinity aptamers selectively inhibit human nonpancreatic secretory phospholipase A2 (hnps-PLA2). J. Med. Chem. 41:778–786.Google Scholar
  61. 61.
    Baskerville, S., Zapp, M. and Ellington, A.D. (1999) Anti-Rex aptamers as mimics of the Rex-binding element. J. Virol. 73:4962–4971.Google Scholar
  62. 62.
    Lebruska, L.L. and Maher, L.J., III. (1999) Selection and characterization of an RNA decoy for transcription factor NF-κB. Biochemistry 38:3168–3174.Google Scholar
  63. 63.
    Biesecker, G., Dihel, L., Enney, K. and Bendele, R.A. (1999) Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 42:219–230.Google Scholar
  64. 64.
    Klug, S.J., Huttenhofer, A. and Famulok, M. (1999) In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus. RNA 5:1180–1190.Google Scholar
  65. 65.
    Fukuda, K., Vishnuvardhan, D., Sekiya, S., Hwang, J., Kakiuchi, N., Taira, K., Shimotohno, K., Kumar, P.K. and Nishikawa, S. (2000) Isolation and characterization of RNA aptamers specific for the hepatitis C virus nonstructural protein 3 protease. Eur. J. Biochem. 267:3685–3694.Google Scholar
  66. 66.
    Kawakami, J., Imanaka, H., Yokota, Y. and Sugimoto, N. (2000) In vitro selection of aptamers that act with Zn2+. J. Inorg. Biochem. 82:197–206.Google Scholar
  67. 67.
    Hirao, I., Madin, K., Endo, Y., Yokoyama, S. and Ellington, A.D. (2000) RNA aptamers that bind to and inhibit the ribosome-inactivating protein, pepocin. J. Biol. Chem. 275:4943–4948.Google Scholar
  68. 68.
    White, R., Rusconi, C., Scardino, E., Wolberg, A., Lawson, J., Hoffman, M. and Sullenger, B. (2001) Generation of species cross-reactive aptamers using “toggle” SELEX. Mol. Ther. 4:567–573.Google Scholar
  69. 69.
    Rusconi, C.P., Scardino, E., Layzer, J., Pitoc, G.A., Ortel, T.L., Monroe, D. and Sullenger, B.A. (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature (Lond.) 419:90–94.Google Scholar
  70. 70.
    Vuyisich, M. and Beal, P.A. (2002) Controlling protein activity with ligand-regulated RNA aptamers. Chem. Biol. 9:907–913.Google Scholar
  71. 71.
    Kimoto, M., Shirouzu, M., Mizutani, S., Koide, H., Kaziro, Y., Hirao, I. and Yokoyama, S. (2002) Anti-(Raf-1) RNA aptamers that inhibit Ras-induced Raf-1 activation. Eur. J. Biochem. 269:697–704.Google Scholar
  72. 72.
    White, R.R., Shan, S., Rusconi, C.P., Shetty, G., Dewhirst, M.W., Kontos, C.D. and Sullenger, B.A. (2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc. Natl. Acad. Sci. USA 100:5028–5033.Google Scholar
  73. 73.
    Santulli-Marotto, S., Nair, S.K., Rusconi, C., Sullenger, B. and Gilboa, E. (2003) Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 63:7483–7489.Google Scholar
  74. 74.
    Chen, C.H., Chernis, G.A., Hoang, V.Q. and Landgraf, R. (2003) Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl. Acad. Sci. USA 100:9226–9231.Google Scholar
  75. 75.
    Hirao, I., Harada, Y., Nojima, T., Osawa, Y., Masaki, H. and Yokoyama, S. (2004) In vitro selection of RNA aptamers that bind to colicin E3 and structurally resemble the decoding site of 16S ribosomal RNA. Biochemistry 43:3214–3221.Google Scholar
  76. 76.
    Gopinath, S.C., Misono, T.S., Kawasaki, K., Mizuno, T., Imai, M., Odagiri, T. and Kumar, P.K. (2006) An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J. Gen. Virol. 87:479–487.Google Scholar
  77. 77.
    Weiss, S., Proske, D., Neumann, M., Groschup, M.H., Kretzschmar, H.A., Famulok, M. and Winnacker, E.L. (1997) RNA aptamers specifically interact with the prion protein PrP. J. Virol. 71:8790–8797.Google Scholar
  78. 78.
    Davis, K.A., Lin, Y., Abrams, B. and Jayasena, S.D. (1998) Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res. 26:3915–3924.Google Scholar
  79. 79.
    Moreno, M., Rincón, E., Piñeiro, D., Fernández, G., Domingo, A., Jiménez-Ruíz, A., Salinas, M. and González, V.M. (2003) Selection of aptamers against KMP-11 using colloidal gold during the SELEX process. Biochem. Biophys. Res. Commun. 308:214–218.Google Scholar
  80. 80.
    Doudna, J.A., Cech, T.R. and Sullenger, B.A. (1995) Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Proc. Natl. Acad. Sci. USA 92:2355–2359.Google Scholar
  81. 81.
    Xu, W. and Ellington, A.D. (1996) Anti-peptide aptamers recognize amino acid sequence and bind a protein epitope. Proc. Natl. Acad. Sci. USA 93:7475–7480.Google Scholar
  82. 82.
    Lee, S.W. and Sullenger, B.A. (1996) Isolation of a nuclease-resistant decoy RNA that selectively blocks autoantibody binding to insulin receptors on human lymphocytes. J. Exp. Med. 184:315–324.Google Scholar
  83. 83.
    O'Connell, D., Koenig, A., Jennings, S., Hicke, B., Han, H.L., Fitzwater, T., Chang, Y.F., Varki, N., Parma, D. and Varki, A. (1996) Calcium-dependent oligonucleotide antagonists specific for L-selectin. Proc. Natl. Acad. Sci. USA 93:5883–5887.Google Scholar
  84. 84.
    Lee, S.W. and Sullenger, B.A. (1997) Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nat. Biotechnol. 15:41–45.Google Scholar
  85. 85.
    Srisawat, C. and Engelke, D.R. (2001) Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7:632–641.Google Scholar
  86. 86.
    Proske, D., Gilch, S., Wopfner, F., Schatzl, H.M., Winnacker, E.L. and Famulok, M. (2002) Prion-protein-specific aptamer reduces PrPSc formation. ChemBioChem 3:717–725.Google Scholar
  87. 87.
    Nieuwlandt, D., Wecker, M. and Gold, L. (1995) In vitro selection of RNA ligands to substance P. Biochemistry 34:5651–5659.Google Scholar
  88. 88.
    Hicke, B.J., Marion, C., Chang, Y.F., Gould, T., Lynott, C.K., Parma, D., Schmidt, P.G. and Warren, S. (2001) Tenascin-C aptamers are generated using tumor cells and purified protein. J. Biol. Chem. 276:48644–48654.Google Scholar
  89. 89.
    Tao, J. and Frankel, A.D. (1996) Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry 35:2229–2238.Google Scholar
  90. 90.
    Jenison, R.D., Gill, S.C., Pardi, A. and Polisky, B. (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429.Google Scholar
  91. 91.
    Lauhon, C.T. and Szostak, J.W. (1995) RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117:1246–1257.Google Scholar
  92. 92.
    Geiger, A., Burgstaller, P., von der Eltz, H., Roeder, A. and Famulok, M. (1996) RNA aptam-ers that bind L-arginine with sub-micromolar dissociation constants and high enantioselec-tivity. Nucleic Acids Res. 24:1029–1036.Google Scholar
  93. 93.
    Haller, A.A. and Sarnow, P. (1997) In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules. Proc. Natl. Acad. Sci. USA 94:8521–8526.Google Scholar
  94. 94.
    Burke, D.H. and Hoffman, D.C. (1998) A novel acidophilic RNA motif that recognizes coenzyme A. Biochemistry 37:4653–4663.Google Scholar
  95. 95.
    Rink, S.M., Shen, J.C. and Loeb, L.A. (1998) Creation of RNA molecules that recognize the oxidative lesion 7,8-dihydro-8-hydroxy-2′-deoxyguanosine (8-oxodG) in DNA. Proc. Natl. Acad. Sci. USA 95:11619–11624.Google Scholar
  96. 96.
    Wallace, S.T. and Schroeder, R. (1998) In vitro selection and characterization of streptomycin-binding RNAs: recognition discrimination between antibiotics. RNA 4:112–123.Google Scholar
  97. 97.
    Gebhardt, K., Shokraei, A., Babaie, E. and Lindqvist, B.H. (2000) RNA aptamers to S-adenosylhomocysteine: kinetic properties, divalent cation dependency, and comparison with anti-S-adenosylhomocysteine antibody. Biochemistry 39:7255–7265.Google Scholar
  98. 98.
    Brockstedt, U., Uzarowska, A., Montpetit, A., Pfau, W. and Labuda, D. (2004) In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines. Biochem. Biophys. Res. Commun. 313:1004–1008.Google Scholar
  99. 99.
    Burgstaller, P. and Famulok, M. (1994) Isolation of RNA aptamers for biological cofactors by in vitro selection. Angew. Chem. Int. Ed. Engl. 33:1084–1087.Google Scholar
  100. 100.
    Burke, D.H. and Gold, L. (1997) RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. Nucleic Acids Res. 25:2020–2024.Google Scholar
  101. 101.
    Sazani, P.L., Larralde, R. and Szostak, J.W. (2004) A small aptamer with strong and specific recognition of the triphosphate of ATP. J. Am. Chem. Soc. 126:8370–8371.Google Scholar
  102. 102.
    Huizenga, D.E. and Szostak, J.W. (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665.Google Scholar
  103. 103.
    Kiga, D., Futamura, Y., Sakamoto, K. and Yokoyama, S. (1998) An RNA aptamer to the xanthine/guanine base with a distinctive mode of purine recognition. Nucleic Acids Res. 26:1755–1760.Google Scholar
  104. 104.
    Meli, M., Vergne, J., Decout, J.L. and Maurel, M.C. (2002) Adenine-aptamer complexes: a bipartite RNA site that binds the adenine nucleic base. J. Biol. Chem. 277:2104–2111.Google Scholar
  105. 105.
    Wallis, M.G., von Ahsen, U., Schroeder, R. and Famulok, M. (1995) A novel RNA motif for neomycin recognition. Chem. Biol. 2:543–552.Google Scholar
  106. 106.
    Koizumi, M. and Breaker, R.R. (2000) Molecular recognition of cAMP by an RNA aptamer. Biochemistry 39:8983–8992.Google Scholar
  107. 107.
    Win, M.N., Klein, J.S. and Smolke, C.D. (2006) Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res. 34:5670–5682.Google Scholar
  108. 108.
    Lorsch, J.R. and Szostak, J.W. (1994) In vitro selection of RNA aptamers specific for cyano-cobalamin. Biochemistry 33:973–982.Google Scholar
  109. 109.
    Burke, D.H., Scates, L., Andrews, K. and Gold, L. (1996) Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J. Mol. Biol. 264:650–666.Google Scholar
  110. 110.
    Burke, D.H., Hoffman, D.C., Brown, A., Hansen, M., Pardi, A. and Gold, L. (1997) RNA aptamers to the peptidyl transferase inhibitor chloramphenicol. Chem. Biol. 4:833–843.Google Scholar
  111. 111.
    Mannironi, C., Di Nardo, A., Fruscoloni, P. and Tocchini-Valentini, G.P. (1997) In vitro selection of dopamine RNA ligands. Biochemistry 36:9726–9734.Google Scholar
  112. 112.
    Holeman, L.A., Robinson, S.L., Szostak, J.W. and Wilson, C. (1998) Isolation and characterization of fluorophore-binding RNA aptamers. Fold. Des. 3:423–431.Google Scholar
  113. 113.
    Wilson, C., Nix, J. and Szostak, J. (1998) Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry 37:14410–14419.Google Scholar
  114. 114.
    Held, D.M., Greathouse, S.T., Agrawal, A. and Burke, D.H. (2003) Evolutionary landscapes for the acquisition of new ligand recognition by RNA aptamers. J. Mol. Evol. 57:299–308.Google Scholar
  115. 115.
    Cadwell, R.C. and Joyce, G.F. (1994) Mutagenic PCR. PCR Methods Appl. 3:S136–S140.Google Scholar
  116. 116.
    Tahiri-Alaoui, A., Frigotto, L., Manville, N., Ibrahim, J., Romby, P. and James, W. (2002) High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res. 30:e45.Google Scholar
  117. 117.
    Hwang, B. and Lee, S.W. (2002) Improvement of RNA aptamer activity against myasthenic autoantibodies by extended sequence selection. Biochem. Biophys. Res. Commun. 290:656–662.Google Scholar
  118. 118.
    Jarosch, F., Buchner, K. and Klussmann, S. (2006) In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res. 34:e86.Google Scholar
  119. 119.
    Nutiu, R. and Li, Y. (2005) In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed. 44:1061–1065.Google Scholar
  120. 120.
    Vater, A., Jarosch, F., Buchner, K. and Klussmann, S. (2003) Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX. Nucleic Acids Res. 31:e130.Google Scholar
  121. 121.
    Murphy, M.B., Fuller, S.T., Richardson, P.M. and Doyle, S.A. (2003) An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res. 31:e110.Google Scholar
  122. 122.
    Lupold, S.E., Hicke, B.J., Lin, Y. and Coffey, D.S. (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 62:4029–4033.Google Scholar
  123. 123.
    Daniels, D.A., Sohal, A.K., Rees, S. and Grisshammer, R. (2002) Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal. Biochem. 305:214–226.Google Scholar
  124. 124.
    Tsai, D.E., Kenan, D.J. and Keene, J.D. (1992) In vitro selection of an RNA epitope immu-nologically cross-reactive with a peptide. Proc. Natl. Acad. Sci. USA 89:8864–8868.Google Scholar
  125. 125.
    Stoltenburg, R., Reinemann, C. and Strehlitz, B. (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383:83–91.Google Scholar
  126. 126.
    Mann, D., Reinemann, C., Stoltenburg, R. and Strehlitz, B. (2005) In vitro selection of DNA aptamers binding ethanolamine. Biochem. Biophys. Res. Commun. 338:1928–1934.Google Scholar
  127. 127.
    Babendure, J.R., Adams, S.R. and Tsien, R.Y. (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125:14716–14717.Google Scholar
  128. 128.
    Tawfik, D.S. and Griffiths, A.D. (1998) Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16:652–656.Google Scholar
  129. 129.
    Miller, O.J., Bernath, K., Agresti, J.J., Amitai, G., Kelly, B.T., Mastrobattista, E., Taly, V., Magdassi, S., Tawfik, D.S. and Griffiths, A.D. (2006) Directed evolution by in vitro com-partmentalization. Nat. Methods 3:561–570.Google Scholar
  130. 130.
    Golden, M.C., Collins, B.D., Willis, M.C. and Koch, T.H. (2000) Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J. Biotechnol. 81:167–178.Google Scholar
  131. 131.
    Jensen, K.B., Atkinson, B.L., Willis, M.C., Koch, T.H. and Gold, L. (1995) Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands. Proc. Natl. Acad. Sci. USA 92:12220–12224.Google Scholar
  132. 132.
    Smith, D., Kirschenheuter, G.P., Charlton, J., Guidot, D.M. and Repine, J.E. (1995) In vitro selection of RNA-based irreversible inhibitors of human neutrophil elastase. Chem. Biol. 2:741–750.Google Scholar
  133. 133.
    Pileur, F., Andreola, M.L., Dausse, E., Michel, J., Moreau, S., Yamada, H., Gaidamakov, S.A., Crouch, R.J., Toulme, J.J. and Cazenave, C. (2003) Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res. 31:5776–5788.Google Scholar
  134. 134.
    Khati, M., Schuman, M., Ibrahim, J., Sattentau, Q., Gordon, S. and James, W. (2003) Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J. Virol. 77:12692–12698.Google Scholar
  135. 135.
    Misono, T.S. and Kumar, P.K. (2005) Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal. Biochem. 342:312–317.Google Scholar
  136. 136.
    Mendonsa, S.D. and Bowser, M.T. (2004) In vitro evolution of functional DNA using capillary electrophoresis. J. Am. Chem. Soc. 126:20–21.Google Scholar
  137. 137.
    Berezovski, M., Drabovich, A., Krylova, S.M., Musheev, M., Okhonin, V., Petrov, A. and Krylov, S.N. (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127:3165–3171.Google Scholar
  138. 138.
    Berezovski, M., Musheev, M., Drabovich, A. and Krylov, S.N. (2006) Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128:1410–1411.Google Scholar
  139. 139.
    Drabovich, A.P., Berezovski, M., Okhonin, V. and Krylov, S.N. (2006) Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal. Chem. 78:3171–3178.Google Scholar
  140. 140.
    Tang, J., Xie, J., Shao, N. and Yan, Y. (2006) The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 27:1303–1311.Google Scholar
  141. 141.
    Ravelet, C., Grosset, C. and Peyrin, E. (2006) Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers. J. Chromatogr. A 1117:1–10.Google Scholar
  142. 142.
    Cox, J.C. and Ellington, A.D. (2001) Automated selection of anti-protein aptamers. Bioorg. Med. Chem. 9:2525–2531.Google Scholar
  143. 143.
    Sooter, L.J., Riedel, T., Davidson, E.A., Levy, M., Cox, J.C. and Ellington, A.D. (2001) Toward automated nucleic acid enzyme selection. Biol. Chem. 382:1327–1334.Google Scholar
  144. 144.
    Cox, J.C., Rajendran, M., Riedel, T., Davidson, E.A., Sooter, L.J., Bayer, T.S., Schmitz-Brown, M. and Ellington, A.D. (2002) Automated acquisition of aptamer sequences. Comb. Chem. High Throughput Screen. 5:289–299.Google Scholar
  145. 145.
    Cox, J.C., Hayhurst, A., Hesselberth, J., Bayer, T.S., Georgiou, G. and Ellington, A.D. (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30:e108.Google Scholar
  146. 146.
    Bryant, K.F., Cox, J.C., Wang, H., Hogle, J.M., Ellington, A.D. and Coen, D.M. (2005) Binding of herpes simplex virus-1 US11 to specific RNA sequences. Nucleic Acids Res. 33:6090–6100.Google Scholar
  147. 147.
    Drolet, D.W., Jenison, R.D., Smith, D.E., Pratt, D. and Hicke, B.J. (1999) A high throughput platform for systematic evolution of ligands by exponential enrichment (SELEX). Comb. Chem. High Throughput Screen. 2:271–278.Google Scholar
  148. 148.
    Eulberg, D., Buchner, K., Maasch, C. and Klussmann, S. (2005) Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res. 33:e45.Google Scholar
  149. 149.
    Ciesiolka, J., Gorski, J. and Yarus, M. (1995) Selection of an RNA domain that binds Zn2+. RNA 1:538–550.Google Scholar
  150. 150.
    Ciesiolka, J. and Yarus, M. (1996) Small RNA-divalent domains. RNA 2:785–793.Google Scholar
  151. 151.
    Hofmann, H.P., Limmer, S., Hornung, V. and Sprinzl, M. (1997) Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. RNA 3:1289–1300.Google Scholar
  152. 152.
    Moazed, D. and Noller, H.F. (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature (Lond.) 327:389–394.Google Scholar
  153. 153.
    Hermann, T. (2003) Chemical and functional diversity of small molecule ligands for RNA. Biopolymers 70:4–18.Google Scholar
  154. 154.
    von Ahsen, U. and Schroeder, R. (1990) Streptomycin and self-splicing. Nature (Lond.) 346:801.Google Scholar
  155. 155.
    von Ahsen, U. and Schroeder, R. (1991) Streptomycin inhibits splicing of group I introns by competition with the guanosine substrate. Nucleic Acids Res. 19:2261–2265.Google Scholar
  156. 156.
    von Ahsen, U., Davies, J. and Schroeder, R. (1991) Antibiotic inhibition of group I ribozyme function. Nature (Lond.) 353:368–370.Google Scholar
  157. 157.
    von Ahsen, U., Davies, J. and Schroeder, R. (1992) Non-competitive inhibition of group I intron RNA self-splicing by aminoglycoside antibiotics. J. Mol. Biol. 226:935–941.Google Scholar
  158. 158.
    Grate, D. and Wilson, C. (1999) Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA 96:6131–6136.Google Scholar
  159. 159.
    Werstuck, G. and Green, M.R. (1998) Controlling gene expression in living cells through small molecule–RNA interactions. Science 282:296–298.Google Scholar
  160. 160.
    Wang, Y. and Rando, R.R. (1995) Specific binding of aminoglycoside antibiotics to RNA. Chem. Biol. 2:281–290.Google Scholar
  161. 161.
    Wang, Y., Killian, J., Hamasaki, K. and Rando, R.R. (1996) RNA molecules that specifically and stoichiometrically bind aminoglycoside antibiotics with high affinities. Biochemistry 35:12338–12346.Google Scholar
  162. 162.
    Lato, S.M., Boles, A.R. and Ellington, A.D. (1995) In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution. Chem. Biol. 2:291–303.Google Scholar
  163. 163.
    Lato, S.M. and Ellington, A.D. (1996) Screening chemical libraries for nucleic-acid-binding drugs by in vitro selection: a test case with lividomycin. Mol. Divers. 2:103–110.Google Scholar
  164. 164.
    Kwon, M., Chun, S.M., Jeong, S. and Yu, J. (2001) In vitro selection of RNA against kan-amycin B. Mol. Cells 11:303–311.Google Scholar
  165. 165.
    Berens, C., Thain, A. and Schroeder, R. (2001) A tetracycline-binding RNA aptamer. Bioorg. Med. Chem. 9:2549–2556.Google Scholar
  166. 166.
    Wallis, M.G., Streicher, B., Wank, H., von Ahsen, U., Clodi, E., Wallace, S.T., Famulok, M. and Schroeder, R. (1997) In vitro selection of a viomycin-binding RNA pseudoknot. Chem. Biol. 4:357–366.Google Scholar
  167. 167.
    Roychowdhury-Saha, M., Lato, S.M., Shank, E.D. and Burke, D.H. (2002) Flavin recognition by an RNA aptamer targeted toward FAD. Biochemistry 41:2492–2499.Google Scholar
  168. 168.
    Wilson, C. and Szostak, J.W. (1995) In vitro evolution of a self-alkylating ribozyme. Nature (Lond.) 374:777–782.Google Scholar
  169. 169.
    Saran, D., Frank, J. and Burke, D.H. (2003) The tyranny of adenosine recognition among RNA aptamers to coenzyme A. BMC Evol. Biol. 3:26.Google Scholar
  170. 170.
    Connell, G.J., Illangesekare, M. and Yarus, M. (1993) Three small ribooligonucleotides with specific arginine sites. Biochemistry 32:5497–5502.Google Scholar
  171. 171.
    Famulok, M. (1994) Molecular recognition of amino acids by RNA-aptamers: an L-citrulline binding motif and its evolution into an L-arginine binder. J. Am. Chem. Soc. 116:1698–1706.Google Scholar
  172. 172.
    Mannironi, C., Scerch, C., Fruscoloni, P. and Tocchini-Valentini, G.P. (2000) Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif. RNA 6:520–527.Google Scholar
  173. 173.
    Majerfeld, I. and Yarus, M. (1998) Isoleucine: RNA sites with associated coding sequences. RNA 4:471–478.Google Scholar
  174. 174.
    Jeong, S., Eom, T., Kim, S., Lee, S. and Yu, J. (2001) In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion. Biochem. Biophys. Res. Commun. 281:237–243.Google Scholar
  175. 175.
    Srisawat, C., Goldstein, I.J. and Engelke, D.R. (2001) Sephadex-binding RNA ligands: rapid affinity purification of RNA from complex RNA mixtures. Nucleic Acids Res. 29:e4.Google Scholar
  176. 176.
    Lee, J.F., Stovall, G.M. and Ellington, A.D. (2006) Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10:282–289.Google Scholar
  177. 177.
    Pagratis, N.C., Bell, C., Chang, Y.F., Jennings, S., Fitzwater, T., Jellinek, D. and Dang, C. (1997) Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratino-cyte growth factor. Nat. Biotechnol. 15:68–73.Google Scholar
  178. 178.
    Jenison, R.D., Jennings, S.D., Walker, D.W., Bargatze, R.F. and Parma, D. (1998) Oligonucleotide inhibitors of P-selectin-dependent neutrophil-platelet adhesion. Antisense Nucleic Acid Drug Dev. 8:265–279.Google Scholar
  179. 179.
    Kim, Y.M., Choi, K.H., Jang, Y.J., Yu, J. and Jeong, S. (2003) Specific modulation of the anti-DNA autoantibody-nucleic acids interaction by the high affinity RNA aptamer. Biochem. Biophys. Res. Commun. 300:516–523.Google Scholar
  180. 180.
    Ohuchi, S.P., Ohtsu, T. and Nakamura, Y. (2006) Selection of RNA aptamers against recombinant transforming growth factor-13 type III receptor displayed on cell surface. Biochimie 88:897–904.Google Scholar
  181. 181.
    Rusconi, C.P., Yeh, A., Lyerly, H.K., Lawson, J.H. and Sullenger, B.A. (2000) Blocking the initiation of coagulation by RNA aptamers to factor VIIa. Thromb. Haemost. 84:841–848.Google Scholar
  182. 182.
    Rhie, A., Kirby, L., Sayer, N, Wellesley, R., Disterer, P., Sylvester, I., Gill, A., Hope, J., James, W. and Tahiri-Alaoui, A. (2003) Characterization of 2′-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J. Biol. Chem. 278:39697–39705.Google Scholar
  183. 183.
    Ylera, F., Lurz, R., Erdmann, V.A. and Furste, J.P (2002) Selection of RNA aptamers to the Alzheimer's disease amyloid peptide. Biochem. Biophys. Res. Commun. 290:1583–1588.Google Scholar
  184. 184.
    Ulrich, H., Magdesian, M.H., Alves, M.J. and Colli, W. (2002) In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J. Biol. Chem. 277:20756–20762.Google Scholar
  185. 185.
    Giver, L., Bartel, D.P, Zapp, M.L., Green, M.R. and Ellington, A.D. (1993) Selection and design of high-affinity RNA ligands for HIV-1 Rev. Gene 137:19–24.Google Scholar
  186. 186.
    Green, L.S., Jellinek, D., Bell, C, Beebe, L.A., Feistner, B.D., Gill, S.C., Jucker, F.M. and Janjic, N. (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/ vascular endothelial growth factor. Chem. Biol. 2:683–695.Google Scholar
  187. 187.
    Blind, M., Kolanus, W. and Famulok, M. (1999) Cytoplasmic RNA modulators of an inside-out signal-transduction cascade. Proc. Natl. Acad. Sci. USA 96:3606–3610.Google Scholar
  188. 188.
    Mi, J., Zhang, X., Giangrande, PH., McNamara, J.O., II, Nimjee, S.M., Sarraf-Yazdi, S., Sullenger, B.A. and Clary, B.M. (2005) Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem. Biophys. Res. Commun. 338:956–963.Google Scholar
  189. 189.
    Romero-López, C, Barroso-del Jesus, A., Puerta-Fernández, E. and Berzal-Herranz, A. (2005) Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol. Chem. 386:183–190.Google Scholar
  190. 190.
    Homann, M., Lorger, M., Engstler, M., Zacharias, M. and Göringer, H.U. (2006) Serum-stable RNA aptamers to an invariant surface domain of live African trypanosomes. Comb. Chem. High Throughput Screen. 9:491–499.Google Scholar
  191. 191.
    Buskirk, A.R., Kehayova, P.D., Landrigan, A. and Liu, D.R. (2003) In vivo evolution of an RNA-based transcriptional activator. Chem. Biol. 10:533–540.Google Scholar
  192. 192.
    Buskirk, A.R., Landrigan, A. and Liu, D.R. (2004) Engineering a ligand-dependent RNA transcriptional activator. Chem. Biol. 11:1157–1163.Google Scholar
  193. 193.
    Pestourie, C, Tavitian, B. and Duconge, F. (2005) Aptamers against extracellular targets for in vivo applications. Biochimie 87:921–930.Google Scholar
  194. 194.
    Tucker, C.E., Chen, L.S., Judkins, M.B., Farmer, J.A., Gill, S.C. and Drolet, D.W. (1999) Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J. Chromatogr. B 732:203–212.Google Scholar
  195. 195.
    Kim, E.S., Serur, A., Huang, J., Manley, C.A., McCrudden, K.W., Frischer, J.S., Soffer, S.Z., Ring, L., New, T, Zabski, S., Rudge, J.S., Holash, J., Yancopoulos, G.D., Kandel, J.J. and Yamashiro, D.J. (2002) Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc. Natl. Acad. Sci. USA 99:11399–11404.Google Scholar
  196. 196.
    Eyetech Study Group. (2003) Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 110:979–986.Google Scholar
  197. 197.
    Morris, K.N., Jensen, K.B., Julin, CM., Weil, M. and Gold, L. (1998) High affinity ligands from in vitro selection: complex targets. Proc. Natl. Acad. Sci. USA 95:2902–2907.Google Scholar
  198. 198.
    Lorger, M., Engstler, M., Homann, M. and Göringer, H.U. (2003) Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers. Eukaryot. Cell 2:84–94.Google Scholar
  199. 199.
    Cerchia, L., Duconge, F., Pestourie, C., Boulay, J., Aissouni, Y., Gombert, K., Tavitian, B., de Franciscis, V. and Libri, D. (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol. 3:e123.Google Scholar
  200. 200.
    Shangguan, D., Li, Y., Tang, Z., Cao, Z.C., Chen, H.W., Mallikaratchy, P., Sefah, K., Yang, C.J. and Tan, W. (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103:11838–11843.Google Scholar
  201. 201.
    Chu, T.C., Twu, K.Y., Ellington, A.D. and Levy, M. (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res. 34:e73.Google Scholar
  202. 202.
    Pan, W., Craven, R.C., Qiu, Q., Wilson, C.B., Wills, J.W., Golovine, S. and Wang, J.F. (1995) Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc. Natl. Acad. Sci. USA 92:11509–11513.Google Scholar
  203. 203.
    Wang, J., Jiang, H. and Liu, F. (2000) In vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection. RNA 6:571–583.Google Scholar
  204. 204.
    Homann, M. and Göringer, H.U. (1999) Combinatorial selection of high affinity RNA lig-ands to live African trypanosomes. Nucleic Acids Res. 27:2006–2014.Google Scholar
  205. 205.
    Famulok, M., Blind, M. and Mayer, G. (2001) Intramers as promising new tools in functional proteomics. Chem. Biol. 8:931–939.Google Scholar
  206. 206.
    Famulok, M. and Verma, S. (2002) In vivo-applied functional RNAs as tools in proteomics and genomics research. Trends Biotechnol. 20:462–466.Google Scholar
  207. 207.
    Toulmé, J.J., Di Primo, C. and Boucard, D. (2004) Regulating eukaryotic gene expression with aptamers. FEBS Lett. 567:55–62.Google Scholar
  208. 208.
    Kim, M.Y. and Jeong, S. (2004) Inhibition of the functions of the nucleocapsid protein of human immunodeficiency virus-1 by an RNA aptamer. Biochem. Biophys. Res. Commun. 320:1181–1186.Google Scholar
  209. 209.
    Theis, M.G., Knorre, A., Kellersch, B., Moelleken, J., Wieland, F., Kolanus, W. and Famulok, M. (2004) Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc. Natl. Acad. Sci. USA 101:11221–11226.Google Scholar
  210. 210.
    Choi, K.H., Park, M.W., Lee, S.Y., Jeon, M.Y., Kim, M.Y., Lee, H.K., Yu, J., Kim, H.J., Han, K., Lee, H., Park, K., Park, W.J. and Jeong, S. (2006) Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer. Mol. Cancer Ther. 5:2428–2434.Google Scholar
  211. 211.
    Cerchia, L., Hamm, J., Libri, D., Tavitian, B. and de Franciscis, V. (2002) Nucleic acid aptamers in cancer medicine. FEBS Lett. 528:12–16.Google Scholar
  212. 212.
    Nimjee, S.M., Rusconi, C.P. and Sullenger, B.A. (2005) Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56:555–583.Google Scholar
  213. 213.
    Ireson, C.R. and Kelland, L.R. (2006) Discovery and development of anticancer aptamers. Mol. Cancer Ther. 5:2957–2962.Google Scholar
  214. 214.
    Pei, D.H., Ulrich, H.D. and Schultz, P.G. (1991) A combinatorial approach toward DNA recognition. Science 253:1408–1411.Google Scholar
  215. 215.
    Soukup, G.A., Ellington, A.D. and Maher, L.J., III. (1996) Selection of RNAs that bind to duplex DNA at neutral pH. J. Mol. Biol. 259:216–228.Google Scholar
  216. 216.
    Mishra, R.K., Le Tinévez, R. and Toulmé, J.J. (1996) Targeting nucleic acid secondary structures by antisense oligonucleotides designed through in vitro selection. Proc. Natl. Acad. Sci. USA 93:10679–10684.Google Scholar
  217. 217.
    Boiziau, C., Dausse, E., Mishra, R., Ducongé, F. and Toulmé, J.J. (1997) Identification of aptamers against the DNA template for in vitro transcription of the HIV-1 TAR element. Antisense Nucleic Acid Drug Dev. 7:369–380.Google Scholar
  218. 218.
    Ducongé, F. and Toulmé, J.J. (1999) In vitro selection identifies key determinants for loop–loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. RNA 5:1605–1614.Google Scholar
  219. 219.
    Scarabino, D., Crisari, A., Lorenzini, S., Williams, K. and Tocchini-Valentini, G.P. (1999) tRNA prefers to kiss. EMBO J. 18:4571–4578.Google Scholar
  220. 220.
    Tok, J.B., Cho, J. and Rando, R.R. (2000) RNA aptamers that specifically bind to a 16S ribosomal RNA decoding region construct. Nucleic Acids Res. 28:2902–2910.Google Scholar
  221. 221.
    Aldaz-Carroll, L., Tallet, B., Dausse, E., Yurchenko, L. and Toulmé, J.J. (2002) Apical loop–internal loop interactions: a new RNA–RNA recognition motif identified through in vitro selection against RNA hairpins of the hepatitis C virus mRNA. Biochemistry 41:5883–5893.Google Scholar
  222. 222.
    Kikuchi, K., Umehara, T., Fukuda, K., Hwang, J., Kuno, A., Hasegawa, T. and Nishikawa, S. (2003) RNA aptamers targeted to domain II of hepatitis C virus IRES that bind to its apical loop region. J. Biochem. 133:263–270.Google Scholar
  223. 223.
    Da Rocha Gomes, S., Dausse, E. and Toulme, J.J. (2004) Determinants of apical loop– internal loop RNA–RNA interactions involving the HCV IRES. Biochem. Biophys. Res. Commun. 322:820–826.Google Scholar
  224. 224.
    Kikuchi, K., Umehara, T., Fukuda, K., Kuno, A., Hasegawa, T. and Nishikawa, S. (2005) A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III-IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res. 33:683–692.Google Scholar
  225. 225.
    Fauzi, H., Jack, K.D. and Hines, J.V. (2005) In vitro selection to identify determinants in tRNA for Bacillus subtilis tyrS T box antiterminator mRNA binding. Nucleic Acids Res. 33:2595–2602.Google Scholar
  226. 226.
    Manimala, J.C., Wiskur, S.L., Ellington, A.D. and Anslyn, E.V. (2004) Tuning the specificity of a synthetic receptor using a selected nucleic acid receptor. J. Am. Chem. Soc. 126:16515–16519.Google Scholar
  227. 227.
    Carothers, J.M., Oestreich, S.C., Davis, J.H. and Szostak, J.W. (2004) Informational complexity and functional activity of RNA structures. J. Am. Chem. Soc. 126:5130–5137.Google Scholar
  228. 228.
    Davis, J.P., Janjic, N., Javornik, B.E. and Zichi, D.A. (1996) Identifying consensus patterns and secondary structure in SELEX sequence sets. Methods Enzymol. 267:302–314.Google Scholar
  229. 229.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406–3415.Google Scholar
  230. 230.
    Burgstaller, P., Kochoyan, M. and Famulok, M. (1995) Structural probing and damage selection of citrulline- and arginine-specific RNA aptamers identify base positions required for binding. Nucleic Acids Res. 23:4769–4776.Google Scholar
  231. 231.
    Burgstaller, P. and Famulok, M. (1996) Structural characterization of a flavin-specific RNA aptamer by chemical probing. Bioorg. Med. Chem. Lett. 6:1157–1162.Google Scholar
  232. 232.
    McGregor, A., Murray, J.B., Adams, C.J., Stockley, P.G. and Connolly, B.A. (1999) Secondary structure mapping of an RNA ligand that has high affinity for the MetJ repressor protein and interference modification analysis of the protein–RNA complex. J. Biol. Chem. 274:2255–2262.Google Scholar
  233. 233.
    Sayer, N.M., Cubin, M., Rhie, A., Bullock, M., Tahiri-Alaoui, A. and James, W. (2004) Structural determinants of conformationally selective, prion-binding aptamers. J. Biol. Chem. 279:13102–13109.Google Scholar
  234. 234.
    Dey, A.K., Griffiths, C., Lea, S.M. and James, W. (2005) Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1. RNA 11:873–884.Google Scholar
  235. 235.
    Davis, J.H. and Szostak, J.W. (2002) Isolation of high-affinity GTP aptamers from partially structured RNA libraries. Proc. Natl. Acad. Sci. USA 99:11616–11621.Google Scholar
  236. 236.
    Dunn, B.M. and Chaiken, I.M. (1974) Quantitative affinity chromatography. Determination of binding constants by elution with competitive inhibitors. Proc. Natl. Acad. Sci. USA 71:2382–2385.Google Scholar
  237. 237.
    Arnold, F.H., Schofield, S.A. and Blanch, H.W. (1986) Analytical affinity chromatography. I. Local equilibrium theory and the measurement of assocation and inhibition constants. J. Chromatogr. 355:1–12.Google Scholar
  238. 238.
    Arnold, F.H. and Blanch, H.W. (1986) Analytical affinity chromatography. II. Rate theory and the measurement of biological binding kinetics. J. Chromatogr. 355:13–27.Google Scholar
  239. 239.
    Jiang, Y., Zhu, C., Ling, L., Wan, L., Fang, X. and Bai, C. (2003) Specific aptamer–protein interaction studied by atomic force microscopy. Anal. Chem. 75:2112–2116.Google Scholar
  240. 240.
    Jiang, Y., Wang, J., Fang, X. and Bai, C. (2004) Study of the effect of metal ion on the specific interaction between protein and aptamer by atomic force microscopy. J. Nanosci. Nanotechnol. 4:611–615.Google Scholar
  241. 241.
    Basnar, B., Elnathan, R. and Willner, I. (2006) Following aptamer-thrombin binding by force measurements. Anal. Chem. 78:3638–3642.Google Scholar
  242. 242.
    Jayasena, S.D. (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45:1628–1650.Google Scholar
  243. 243.
    Carothers, J.M., Oestreich, S.C. and Szostak, J.W. (2006) Aptamers selected for higher- affinity binding are not more specific for the target ligand. J. Am. Chem. Soc. 128:7929–7937.Google Scholar
  244. 244.
    Huang, Z. and Szostak, J.W. (2003) Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer. RNA 9:1456–1463.Google Scholar
  245. 245.
    Anderson, P.C. and Mecozzi, S. (2005) Unusually short RNA sequences: design of a 13-mer RNA that selectively binds and recognizes theophylline. J. Am. Chem. Soc. 127:5290–5291.Google Scholar
  246. 246.
    Anderson, P.C. and Mecozzi, S. (2005) Identification of a 14mer RNA that recognizes and binds flavin mononucleotide with high affinity. Nucleic Acids Res. 33:6992–6999.Google Scholar
  247. 247.
    Yarus, M. (2000) RNA-ligand chemistry: a testable source for the genetic code. RNA 6:475–484.Google Scholar
  248. 248.
    Lin, Y., Qiu, Q., Gill, S.C. and Jayasena, S.D. (1994) Modified RNA sequence pools for in vitro selection. Nucleic Acids Res. 22:5229–5234.Google Scholar
  249. 249.
    Lin, Y., Nieuwlandt, D., Magallanez, A., Feistner, B. and Jayasena, S.D. (1996) High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro-selected 2′-amino-modified RNA. Nucleic Acids Res. 24:3407–3414.Google Scholar
  250. 250.
    Beaudry, A., DeFoe, J., Zinnen, S., Burgin, A. and Beigelman, L. (2000) In vitro selection of a novel nuclease-resistant RNA phosphodiesterase. Chem. Biol. 7:323–334.Google Scholar
  251. 251.
    Beigelman, L., McSwiggen, J.A., Draper, K.G., Gonzalez, C., Jensen, K., Karpeisky, A.M., Modak, A.S., Matulic-Adamic, J., DiRenzo, A.B., Haeberli, P., Sweedler, D., Trace D., Grimm, S., Wincott, F.E., Thackray, V.G., and Usman, N. (1995) Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J. Biol. Chem. 270:25702–25708.Google Scholar
  252. 252.
    Kato, Y., Minakawa, N., Komatsu, Y., Kamiya, H., Ogawa, N., Harashima, H. and Matsuda, A. (2005) New NTP analogs: the synthesis of 4′-thioUTP and 4′-thioCTP and their utility for SELEX. Nucleic Acids Res. 33:2942–2951.Google Scholar
  253. 253.
    Green, L., Waugh, S., Binkley, J.P., Hostomska, Z., Hostomsky, Z. and Tuerk, C. (1995) Comprehensive chemical modification interference and nucleotide substitution analysis of an RNA pseudoknot inhibitor to HIV-1 reverse transcriptase. J. Mol. Biol. 247:60–68.Google Scholar
  254. 254.
    Bell, C., Lynam, E., Landfair, D.J., Janjic, N. and Wiles, M.E. (1999) Oligonucleotide NX1838 inhibits VEGF165-mediated cellular responses in vitro. In Vitro Cell Dev. Biol. Anim. 35:533–542.Google Scholar
  255. 255.
    de Smidt, P.C., Le Doan, T., de Falco, S. and van Berkel, T.J. (1991) Association of antisense oligonucleotides with lipoproteins prolongs the plasma half-life and modifies the tissue distribution. Nucleic Acids Res. 19:4695–4700.Google Scholar
  256. 256.
    Rusconi, C.P., Roberts, J.D., Pitoc, G.A., Nimjee, S.M., White, R.R., Quick, G., Jr., Scardino, E., Fay, W.P. and Sullenger, B.A. (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol. 22:1423–1428.Google Scholar
  257. 257.
    Dougan, H., Lyster, D.M., Vo, C.V., Stafford, A., Weitz, J.I. and Hobbs, J.B. (2000) Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl. Med. Biol. 27:289–297.Google Scholar
  258. 258.
    Willis, M.C., Collins, B.D., Zhang, T., Green, L.S., Sebesta, D.P., Bell, C., Kellogg, E., Gill, S.C., Magallanez, A., Knauer, S., Bendele, R.A., Gill, P.S. and Janjic, N. (1998) Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug. Chem. 9:573–582.Google Scholar
  259. 259.
    Schmidt, K.S., Borkowski, S., Kurreck, J., Stephens, A.W., Bald, R., Hecht, M., Friebe, M., Dinkelborg, L. and Erdmann, V.A. (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. 32:5757–5765.Google Scholar
  260. 260.
    Battersby, T.R., Ang, D.N., Burgstaller, P., Jurczyk, S.C., Bowser, M.T., Buchanan, D.D., Kennedy, R.T. and Benner, S.A. (1999) Quantitative analysis of receptors for adenosine nucleotides obtained via in vitro selection from a library incorporating a cationic nucleotide analog. J. Am. Chem. Soc. 121:9781–9789.Google Scholar
  261. 261.
    Teramoto, N., Ichinari, H., Kawazoe, N., Imanishi, Y. and Ito, Y. (2001) Peroxidase activity of in vitro-selected 2′-amino RNAs. Biotechnol. Bioeng. 75:463–468.Google Scholar
  262. 262.
    Vaish, N.K., Larralde, R., Fraley, A.W., Szostak, J.W. and McLaughlin, L.W. (2003) A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality. Biochemistry 42:8842–8851.Google Scholar
  263. 263.
    Vater, A. and Klussmann, S. (2003) Toward third-generation aptamers: Spiegelmers and their therapeutic prospects. Curr. Opin. Drug Disc. Dev. 6:253–261.Google Scholar
  264. 264.
    Klussmann, S., Nolte, A., Bald, R., Erdmann, V.A. and Furste, J.P. (1996) Mirror-image RNA that binds D-adenosine. Nat. Biotechnol. 14:1112–1115.Google Scholar
  265. 265.
    Nolte, A., Klussmann, S., Bald, R., Erdmann, V.A. and Furste, J.P. (1996) Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat. Biotechnol. 14:1116–1119.Google Scholar
  266. 266.
    Leva, S., Lichte, A., Burmeister, J., Muhn, P., Jahnke, B., Fesser, D., Erfurth, J., Burgstaller, P. and Klussmann, S. (2002) GnRH binding RNA and DNA Spiegelmers: a novel approach toward GnRH antagonism. Chem. Biol. 9:351–359.Google Scholar
  267. 267.
    Helmling, S., Maasch, C., Eulberg, D., Buchner, K., Schroder, W., Lange, C., Vonhoff, S., Wlotzka, B., Tschop, M.H., Rosewicz, S. and Klussmann, S. (2004) Inhibition of ghre-lin action in vitro and in vivo by an RNA-Spiegelmer. Proc. Natl. Acad. Sci. USA 101:13174–13179.Google Scholar
  268. 268.
    Faulhammer, D., Eschgfäller, B., Stark, S., Burgstaller, P., Englberger, W., Erfurth, J., Kleinjung, F., Rupp, J., Dan Vulcu, S., Schröder, W., Vonhoff, S., Nawrath, H., Gillen, C. and Klussmann, S. (2004) Biostable aptamers with antagonistic properties to the neuro-peptide nociceptin/orphanin FQ. RNA 10:516–527.Google Scholar
  269. 269.
    Lin, C.H. and Patel, D.J. (1997) Structural basis of DNA folding and recognition in an AMP–DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem. Biol. 4:817–832.Google Scholar
  270. 270.
    Travascio, P., Bennet, A.J., Wang, D.Y. and Sen, D. (1999) A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem. Biol. 6:779–787.Google Scholar
  271. 271.
    Stojanovic, M.N., de Prada, P. and Landry, D.W. (2001) Aptamer-based folding fluorescent sensor for cocaine. J. Am. Chem. Soc. 123:4928–4931.Google Scholar
  272. 272.
    Stojanovic, M.N. and Landry, D.W. (2002) Aptamer-based colorimetric probe for cocaine. J. Am. Chem. Soc. 124:9678–9679.Google Scholar
  273. 273.
    Kato, T., Yano, K., Ikebukuro, K. and Karube, I. (2000) Interaction of three-way DNA junctions with steroids. Nucleic Acids Res. 28:1963–1968.Google Scholar
  274. 274.
    Kim, Y.S., Jung, H.S., Matsuura, T., Lee, H.Y., Kawai, T. and Gu, M.B. (2007) Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens. Bioelectron. 22:2525–2531.Google Scholar
  275. 275.
    Chinnapen, D.J. and Sen, D. (2002) Hemin-stimulated docking of cytochrome c to a hemin-DNA aptamer complex. Biochemistry 41:5202–5212.Google Scholar
  276. 276.
    Shoji, A., Kuwahara, M., Ozaki, H. and Sawai, H. (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J. Am. Chem. Soc. 129:1456–1464.Google Scholar
  277. 277.
    Boiziau, C., Dausse, E., Yurchenko, L. and Toulmé, J.J. (1999) DNA aptamers selected against the HIV-1 trans-activation-responsive RNA element form RNA–DNA kissing complexes. J. Biol. Chem. 274:12730–12737.Google Scholar
  278. 278.
    Sekkai, D., Dausse, E., Di Primo, C., Darfeuille, F., Boiziau, C. and Toulmé, J.J. (2002) In vitro selection of DNA aptamers against the HIV-1 TAR RNA hairpin. Antisense Nucleic Acid Drug Dev. 12:265–274.Google Scholar
  279. 279.
    Bruno, J.G. and Kiel, J.L. (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens. Bioelectron. 14:457–464.Google Scholar
  280. 280.
    Latham, J.A., Johnson, R. and Toole, J.J. (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine. Nucleic Acids Res. 22:2817–2822.Google Scholar
  281. 281.
    Masud, M.M., Kuwahara, M., Ozaki, H. and Sawai, H. (2004) Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX. Bioorg. Med. Chem. 12:1111–1120.Google Scholar
  282. 282.
    Williams, K.P., Liu, X.H., Schumacher, T.N., Lin, H.Y., Ausiello, D.A., Kim, P.S. and Bartel, D.P. (1997) Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc. Natl. Acad. Sci. USA 94:11285–11290.Google Scholar
  283. 283.
    Wlotzka, B., Leva, S., Eschgfaller, B., Burmeister, J., Kleinjung, F., Kaduk, C., Muhn, P., Hess-Stumpp, H. and Klussmann, S. (2002) In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc. Natl. Acad. Sci. USA 99:8898–8902.Google Scholar
  284. 284.
    Purschke, W.G., Radtke, F., Kleinjung, F. and Klussmann, S. (2003) A DNA Spiegelmer to staphylococcal enterotoxin B. Nucleic Acids Res. 31:3027–3032.Google Scholar
  285. 285.
    Nguyen, D.H., DeFina, S.C., Fink, W.H. and Dieckmann, T. (2002) Binding to an RNA aptamer changes the charge distribution and conformation of malachite green. J. Am. Chem. Soc. 124:15081–15084.Google Scholar
  286. 286.
    Hermann, T. and Patel, D.J. (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825.Google Scholar
  287. 287.
    Lin, C.H. and Patel, D.J. (1996) Encapsulating an amino acid in a DNA fold. Nat. Struct. Biol. 3:1046–1050.Google Scholar
  288. 288.
    Lin, C.H., Wang, W., Jones, R.A. and Patel, D.J. (1998) Formation of an amino-acid-binding pocket through adaptive zippering-up of a large DNA hairpin loop. Chem. Biol. 5:555–572.Google Scholar
  289. 289.
    Yang, Y., Kochoyan, M., Burgstaller, P., Westhof, E. and Famulok, M. (1996) Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 272:1343–1347.Google Scholar
  290. 290.
    Fan, P., Suri, A.K., Fiala, R., Live, D. and Patel, D.J. (1996) Molecular recognition in the FMN–RNA aptamer complex. J. Mol. Biol. 258:480–500.Google Scholar
  291. 291.
    Jiang, L., Suri, A.K., Fiala, R. and Patel, D.J. (1997) Saccharide–RNA recognition in an aminoglycoside antibiotic–RNA aptamer complex. Chem. Biol. 4:35–50.Google Scholar
  292. 292.
    Jiang, L. and Patel, D.J. (1998) Solution structure of the tobramycin–RNA aptamer complex. Nat. Struct. Biol. 5:769–774.Google Scholar
  293. 293.
    Jiang, L., Majumdar, A., Hu, W., Jaishree, T.J., Xu, W. and Patel, D.J. (1999) Saccharide– RNA recognition in a complex formed between neomycin B and an RNA aptamer. Structure 7:817–827.Google Scholar
  294. 294.
    Ye, X., Gorin, A., Ellington, A.D. and Patel, D.J. (1996) Deep penetration of an α-helix into a widened RNA major groove in the HIV-1 rev peptide–RNA aptamer complex. Nat. Struct. Biol. 3:1026–1033.Google Scholar
  295. 295.
    Collin, D., van Heijenoort, C., Boiziau, C., Toulmé, J.J. and Guittet, E. (2000) NMR characterization of a kissing complex formed between the TAR RNA element of HIV-1 and a DNA aptamer. Nucleic Acids Res. 28:3386–3391.Google Scholar
  296. 296.
    Flinders, J., DeFina, S.C., Brackett, D.M., Baugh, C., Wilson, C. and Dieckmann, T. (2004) Recognition of planar and nonplanar ligands in the malachite green–RNA aptamer complex. ChemBioChem 5:62–72.Google Scholar
  297. 297.
    Baugh, C., Grate, D. and Wilson, C. (2000) 2.8 Å crystal structure of the malachite green aptamer. J. Mol. Biol. 301:117–128.Google Scholar
  298. 298.
    Nix, J., Sussman, D. and Wilson, C. (2000) The 1.3 Å crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition. J. Mol. Biol. 296:1235–1244.Google Scholar
  299. 299.
    Sussman, D., Nix, J.C. and Wilson, C. (2000) The structural basis for molecular recognition by the vitamin B12 RNA aptamer. Nat. Struct. Biol. 7:53–57.Google Scholar
  300. 300.
    Sussman, D. and Wilson, C. (2000) A water channel in the core of the vitamin B12 RNA aptamer. Structure 8:719–727.Google Scholar
  301. 301.
    Tereshko, V., Skripkin, E. and Patel, D.J. (2003) Encapsulating streptomycin within a small 40-mer RNA. Chem. Biol. 10:175–187.Google Scholar
  302. 302.
    Rowsell, S., Stonehouse, N.J., Convery, M.A., Adams, C.J., Ellington, A.D., Hirao, I., Peabody, D.S., Stockley, P.G. and Phillips, S.E. (1998) Crystal structures of a series of RNA aptamers complexed to the same protein target. Nat. Struct. Biol. 5:970–975.Google Scholar
  303. 303.
    Convery, M.A., Rowsell, S., Stonehouse, N.J., Ellington, A.D., Hirao, I., Murray, J.B., Peabody, D.S., Phillips, S.E. and Stockley, P.G. (1998) Crystal structure of an RNA aptamer–protein complex at 2.8 Å resolution. Nat. Struct. Biol. 5:133–139.Google Scholar
  304. 304.
    Horn, W.T., Convery, M.A., Stonehouse, N.J., Adams, C.J., Liljas, L., Phillips, S.E. and Stockley, P.G. (2004) The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand–RNA interactions. RNA 10:1776–1782.Google Scholar
  305. 305.
    Zimmermann, G.R., Jenison, R.D., Wick, C.L., Simorre, J.P. and Pardi, A. (1997) Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat. Struct. Biol. 4:644–649.Google Scholar
  306. 306.
    Zimmermann, G.R., Wick, C.L., Shields, T.P., Jenison, R.D. and Pardi, A. (2000) Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6:659–667.Google Scholar
  307. 307.
    Jucker, F.M., Phillips, R.M., McCallum, S.A. and Pardi, A. (2003) Role of a heterogeneous free state in the formation of a specific RNA–theophylline complex. Biochemistry 42:2560–2567.Google Scholar
  308. 308.
    Zimmermann, G.R., Shields, T.P., Jenison, R.D., Wick, C.L. and Pardi, A. (1998) A semi-conserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA. Biochemistry 37:9186–9192.Google Scholar
  309. 309.
    Jiang, F., Kumar, R.A., Jones, R.A. and Patel, D.J. (1996) Structural basis of RNA folding and recognition in an AMP–RNA aptamer complex. Nature (Lond.) 382:183–186.Google Scholar
  310. 310.
    Dieckmann, T., Suzuki, E., Nakamura, G.K. and Feigon, J. (1996) Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA 2:628–640.Google Scholar
  311. 311.
    Patel, D.J., Suri, A.K., Jiang, F., Jiang, L., Fan, P., Kumar, R.A. and Nonin, S. (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J. Mol. Biol. 272:645–664.Google Scholar
  312. 312.
    Nonin, S., Jiang, F. and Patel, D.J. (1997) Imino proton exchange and base-pair kinetics in the AMP–RNA aptamer complex. J. Mol. Biol. 268:359–374.Google Scholar
  313. 313.
    Dieckmann, T., Butcher, S.E., Sassanfar, M., Szostak, J.W. and Feigon, J. (1997) Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding. J. Mol. Biol. 273:467–478.Google Scholar
  314. 314.
    Nonin-Lecomte, S., Lin, C.H. and Patel, D.J. (2001) Additional hydrogen bonds and base-pair kinetics in the symmetrical AMP–DNA aptamer complex. Biophys. J. 81:3422–3431.Google Scholar
  315. 315.
    Macaya, R.F., Schultze, P., Smith, F.W., Roe, J.A. and Feigon, J. (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. USA 90:3745–3749.Google Scholar
  316. 316.
    Wang, K.Y., McCurdy, S., Shea, R.G., Swaminathan, S. and Bolton, P.H. (1993) A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 32:1899–1904.Google Scholar
  317. 317.
    Schultze, P., Macaya, R.F. and Feigon, J. (1994) Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 235:1532–1547.Google Scholar
  318. 318.
    Wang, K.Y., Krawczyk, S.H., Bischofberger, N., Swaminathan, S. and Bolton, P.H. (1993) The tertiary structure of a DNA aptamer which binds to and inhibits thrombin determines activity. Biochemistry 32:11285–11292.Google Scholar
  319. 319.
    Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E. and Tulinsky, A. (1993) The structure of α-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J. Biol. Chem. 268:17651–17654.Google Scholar
  320. 320.
    Kelly, J.A., Feigon, J. and Yeates, T.O. (1996) Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol. 256:417–422.Google Scholar
  321. 321.
    Padmanabhan, K. and Tulinsky, A. (1996) An ambiguous structure of a DNA 15-mer thrombin complex. Acta Crystallogr. D 52:272–282.Google Scholar
  322. 322.
    Mills, D.R., Peterson, R.L. and Spiegelman, S. (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl. Acad. Sci. USA 58:217–224.Google Scholar
  323. 323.
    Spiegelman, S. (1971) An approach to the experimental analysis of precellular evolution. Q. Rev. Biophys. 4:213–253.Google Scholar
  324. 324.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857.Google Scholar
  325. 325.
    Green, R., Ellington, A.D. and Szostak, J.W. (1990) In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature (Lond.) 347:406–408.Google Scholar
  326. 326.
    Bartel, D.P. and Szostak, J.W. (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261:1411–1418.Google Scholar
  327. 327.
    Teramoto, N., Imanishi, Y. and Ito, Y. (2000) In vitro selection of a ligase ribozyme carrying alkylamino groups in the side chains. Bioconjug. Chem. 11:744–748.Google Scholar
  328. 328.
    Tuschl, T., Sharp, P.A. and Bartel, D.P. (1998) Selection in vitro of novel ribozymes from a partially randomized U2 and U6 snRNA library. EMBO J. 17:2637–2650.Google Scholar
  329. 329.
    Baskerville, S. and Bartel, D.P. (2002) A ribozyme that ligates RNA to protein. Proc. Natl. Acad. Sci. USA 99:9154–9159.Google Scholar
  330. 330.
    Seelig, B. and Jäschke, A. (1999) A small catalytic RNA motif with Diels–Alderase activity. Chem. Biol. 6:167–176.Google Scholar
  331. 331.
    Seelig, B., Keiper, S., Stuhlmann, F. and Jäschke, A. (2000) Enantioselective ribozyme catalysis of a bimolecular cycloaddition reaction. Angew. Chem. Int. Ed. 39:4576–4579.Google Scholar
  332. 332.
    Tsukiji, S., Pattnaik, S.B. and Suga, H. (2003) An alcohol dehydrogenase ribozyme. Nat. Struct. Biol. 10:713–717.Google Scholar
  333. 333.
    Zhang, B. and Cech, T.R. (1997) Peptide bond formation by in vitro selected ribozymes. Nature (Lond.) 390:96–100.Google Scholar
  334. 334.
    Lohse, P.A. and Szostak, J.W. (1996) Ribozyme-catalysed amino-acid transfer reactions. Nature (Lond.) 381:442–444.Google Scholar
  335. 335.
    Suga, H., Lohse, P.A. and Szostak, J.W. (1998) Structural and kinetic characterization of an acyl transferase ribozyme. J. Am. Chem. Soc. 120:1151–1156.Google Scholar
  336. 336.
    Jenne, A. and Famulok, M. (1998) A novel ribozyme with ester transferase activity. Chem. Biol. 5:23–34.Google Scholar
  337. 337.
    Lee, N., Bessho, Y., Wei, K., Szostak, J.W. and Suga, H. (2000) Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Biol. 7:28–33.Google Scholar
  338. 338.
    Saito, H., Kourouklis, D. and Suga, H. (2001) An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J. 20:1797–1806.Google Scholar
  339. 339.
    Sengle, G., Eisenführ, A., Arora, P.S., Nowick, J.S. and Famulok, M. (2001) Novel RNA catalysts for the Michael reaction. Chem. Biol. 8:459–473.Google Scholar
  340. 340.
    Lorsch, J.R. and Szostak, J.W. (1994) In vitro evolution of new ribozymes with polynucle-otide kinase activity. Nature (Lond.) 371:31–36.Google Scholar
  341. 341.
    Kumar, R.K. and Yarus, M. (2001) RNA-catalyzed amino acid activation. Biochemistry 40:6998–7004.Google Scholar
  342. 342.
    Pan, T. and Uhlenbeck, O.C. (1992) A small metalloribozyme with a two-step mechanism. Nature (Lond.) 358:560–563.Google Scholar
  343. 343.
    Pan, T. and Uhlenbeck, O.C. (1992) In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry 31:3887–3895.Google Scholar
  344. 344.
    Williams, K.P., Ciafre, S. and Tocchini-Valentini, G.P. (1995) Selection of novel Mg2+-dependent self-cleaving ribozymes. EMBO J. 14:4551–4557.Google Scholar
  345. 345.
    Jayasena, V.K. and Gold, L. (1997) In vitro selection of self-cleaving RNAs with a low pH optimum. Proc. Natl. Acad. Sci. USA 94:10612–10617.Google Scholar
  346. 346.
    Curtis, E.A. and Bartel, D.P. (2005) New catalytic structures from an existing ribozyme. Nat. Struct. Mol. Biol. 12:994–1000.Google Scholar
  347. 347.
    Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E. and Bartel, D.P. (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325.Google Scholar
  348. 348.
    Tarasow, T.M., Tarasow, S.L. and Eaton, B.E. (1997) RNA-catalysed carbon–carbon bond formation. Nature (Lond.) 389:54–57.Google Scholar
  349. 349.
    Tarasow, T.M., Kellogg, E., Holley, B.L., Nieuwlandt, D., Tarasow, S.L. and Eaton, B.E. (2004) The effect of mutation on RNA Diels–Alderases. J. Am. Chem. Soc. 126:11843–11851.Google Scholar
  350. 350.
    Unrau, P.J. and Bartel, D.P. (1998) RNA-catalysed nucleotide synthesis. Nature (Lond.) 395:260–263.Google Scholar
  351. 351.
    Chapple, K.E., Bartel, D.P. and Unrau, P.J. (2003) Combinatorial minimization and secondary structure determination of a nucleotide synthase ribozyme. RNA 9:1208–1220.Google Scholar
  352. 352.
    Lau, M.W., Cadieux, K.E. and Unrau, P.J. (2004) Isolation of fast purine nucleotide synthase ribozymes. J. Am. Chem. Soc. 126:15686–15693.Google Scholar
  353. 353.
    Wiegand, T.W., Janssen, R.C. and Eaton, B.E. (1997) Selection of RNA amide synthases. Chem. Biol. 4:675–683.Google Scholar
  354. 354.
    Nieuwlandt, D., West, M., Cheng, X., Kirshenheuter, G. and Eaton, B.E. (2003) The first example of an RNA urea synthase: selection through the enzyme active site of human neu-trophile elastase. ChemBioChem 4:651–654.Google Scholar
  355. 355.
    Illangasekare, M., Sanchez, G., Nickles, T. and Yarus, M. (1995) Aminoacyl–RNA synthesis catalyzed by an RNA. Science 267:643–647.Google Scholar
  356. 356.
    Wecker, M., Smith, D. and Gold, L. (1996) In vitro selection of a novel catalytic RNA: characterization of a sulfur alkylation reaction and interaction with a small peptide. RNA 2:982–994.Google Scholar
  357. 357.
    Tsang, J. and Joyce, G.F. (1996) Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J. Mol. Biol. 262:31–42.Google Scholar
  358. 358.
    Kore, A.R., Vaish, N.K., Morris, J.A. and Eckstein, F. (2000) In vitro evolution of the hammer head ribozyme to a purine-specific ribozyme using mutagenic PCR with two nucle-otide analogues. J. Mol. Biol. 301:1113–1121.Google Scholar
  359. 359.
    Breaker, R.R. and Joyce, G.F. (1994) Inventing and improving ribozyme function: rational design versus iterative selection methods. Trends Biotechnol. 12:268–275.Google Scholar
  360. 360.
    Tsang, J. and Joyce, G.F. (1996) In vitro evolution of randomized ribozymes. Methods Enzymol. 267:410–426.Google Scholar
  361. 361.
    Flynn-Charlebois, A., Prior, T.K., Hoadley, K.A. and Silverman, S.K. (2003) In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3′-5′ to 2′-5′. J. Am. Chem. Soc. 125:5346–5350.Google Scholar
  362. 362.
    Knight, R. and Yarus, M. (2003) Analyzing partially randomized nucleic acid pools: straight dope on doping. Nucleic Acids Res. 31:e30.Google Scholar
  363. 363.
    Prudent, J.R., Uno, T. and Schultz, P.G. (1994) Expanding the scope of RNA catalysis. Science 264:1924–1927.Google Scholar
  364. 364.
    Conn, M.M., Prudent, J.R. and Schultz, P.G. (1996) Porphyrin metalation catalyzed by a small RNA molecule. J. Am. Chem. Soc. 118:7012–7013.Google Scholar
  365. 365.
    Chun, S.-M., Jeong, S., Kim, J.-M., Chong, B.-O., Park, Y.-K., Park, K. and Yu, J. (1999) Cholesterol esterase activity by in vitro selection of RNA against a phosphate transition-state analogue. J. Am. Chem. Soc. 121:10844–10845.Google Scholar
  366. 366.
    Morris, K.N., Tarasow, T.M., Julin, C.M., Simons, S.L., Hilvert, D. and Gold, L. (1994) Enrichment for RNA molecules that bind a Diels–Alder transition state analog. Proc. Natl. Acad. Sci. USA 91:13028–13032.Google Scholar
  367. 367.
    Wright, M.C. and Joyce, G.F. (1997) Continuous in vitro evolution of catalytic function. Science 276:614–617.Google Scholar
  368. 368.
    Ordoukhanian, P. and Joyce, G.F. (1999) A molecular description of the evolution of resistance. Chem. Biol. 6:881–889.Google Scholar
  369. 369.
    Johns, G.C. and Joyce, G.F. (2005) The promise and peril of continuous in vitro evolution. J. Mol. Evol. 61:253–263.Google Scholar
  370. 370.
    Agresti, J.J., Kelly, B.T., Jäschke, A. and Griffiths, A.D. (2005) Selection of ribozymes that catalyse multiple-turnover Diels–Alder cycloadditions by using in vitro compartmentaliza-tion. Proc. Natl. Acad. Sci. USA 102:16170–16175.Google Scholar
  371. 371.
    Levy, M., Griswold, K.E. and Ellington, A.D. (2005) Direct selection of trans-acting ligase ribozymes by in vitro compartmentalization. RNA 11:1555–1562.Google Scholar
  372. 372.
    Ekland, E.H., Szostak, J.W. and Bartel, D.P. (1995) Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269:364–370.Google Scholar
  373. 373.
    Hager, A.J. and Szostak, J.W. (1997) Isolation of novel ribozymes that ligate AMP-activated RNA substrates. Chem. Biol. 4:607–617.Google Scholar
  374. 374.
    Chapman, K.B. and Szostak, J.W. (1995) Isolation of a ribozyme with 5′-5′ ligase activity. Chem. Biol. 2:325–333.Google Scholar
  375. 375.
    Huang, F. and Yarus, M. (1997) 5′-RNA self-capping from guanosine diphosphate. Biochemistry 36:6557–6563.Google Scholar
  376. 376.
    Huang, F., Yang, Z. and Yarus, M. (1998) RNA enzymes with two small-molecule substrates. Chem. Biol. 5:669–678.Google Scholar
  377. 377.
    Huang, F., Bugg, C.W. and Yarus, M. (2000) RNA-catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. Biochemistry 39:15548–15555.Google Scholar
  378. 378.
    Ekland, E.H. and Bartel, D.P. (1996) RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature (Lond.) 382:373–376.Google Scholar
  379. 379.
    Fusz, S., Eisenfuhr, A., Srivatsan, S.G., Heckel, A. and Famulok, M. (2005) A ribozyme for the aldol reaction. Chem. Biol. 12:941–950.Google Scholar
  380. 380.
    Tsukiji, S., Pattnaik, S.B. and Suga, H. (2004) Reduction of an aldehyde by a NADH/Zn2+-dependent redox active ribozyme. J. Am. Chem. Soc. 126:5044–5045.Google Scholar
  381. 381.
    Illangasekare, M. and Yarus, M. (1999) A tiny RNA that catalyzes both aminoacyl–RNA and peptidyl–RNA synthesis. RNA 5:1482–1489.Google Scholar
  382. 382.
    Illangasekare, M. and Yarus, M. (1999) Specific, rapid synthesis of Phe-RNA by RNA. Proc. Natl. Acad. Sci. USA 96:5470–5475.Google Scholar
  383. 383.
    Gugliotti, L.A., Feldheim, D.L. and Eaton, B.E. (2004) RNA-mediated metal–metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science 304:850–852.Google Scholar
  384. 384.
    Gugliotti, L.A., Feldheim, D.L. and Eaton, B.E. (2005) RNA-mediated control of metal nanoparticle shape. J. Am. Chem. Soc. 127:17814–17818.Google Scholar
  385. 385.
    Uhlenbeck, O.C. (2003) Less isn't always more. RNA 9:1415–1417.Google Scholar
  386. 386.
    Wang, Q.S. and Unrau, P.J. (2005) Ribozyme motif structure mapped using random recombination and selection. RNA 11:404–411.Google Scholar
  387. 387.
    Das, S.R. and Piccirilli, J.A. (2005) General acid catalysis by the hepatitis delta virus ribozyme. Nat. Chem. Biol. 1:45–52.Google Scholar
  388. 388.
    Bevilacqua, P.C. and Yajima, R. (2006) Nucleobase catalysis in ribozyme mechanism. Curr. Opin. Chem. Biol. 10:455–464.Google Scholar
  389. 389.
    Unrau, P.J. and Bartel, D.P. (2003) An oxocarbenium-ion intermediate of a ribozyme reaction indicated by kinetic isotope effects. Proc. Natl. Acad. Sci. USA 100:15393–15397.Google Scholar
  390. 390.
    Suga, H., Cowan, J.A. and Szostak, J.W. (1998) Unusual metal ion catalysis in an acyl-transferase ribozyme. Biochemistry 37:10118–10125.Google Scholar
  391. 391.
    Vaidya, A. and Suga, H. (2001) Diverse roles of metal ions in acyl-transferase ribozymes. Biochemistry 40:7200–7210.Google Scholar
  392. 392.
    Saito, H. and Suga, H. (2002) Outersphere and innersphere coordinated metal ions in an aminoacyl-tRNA synthetase ribozyme. Nucleic Acids Res. 30:5151–5159.Google Scholar
  393. 393.
    Flynn-Charlebois, A., Lee, N. and Suga, H. (2001) A single metal ion plays structural and chemical roles in an aminoacyl-transferase ribozyme. Biochemistry 40:13623–13632.Google Scholar
  394. 394.
    Sievers, A., Beringer, M., Rodnina, M.V. and Wolfenden, R. (2004) The ribosome as an entropy trap. Proc. Natl. Acad. Sci. USA 101:7897–7901.Google Scholar
  395. 395.
    Weinger, J.S., Parnell, K.M., Dorner, S., Green, R. and Strobel, S.A. (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol. 11:1101–1106.Google Scholar
  396. 396.
    Bieling, P., Beringer, M., Adio, S. and Rodnina, M.V. (2006) Peptide bond formation does not involve acid–base catalysis by ribosomal residues. Nat. Struct. Mol. Biol. 13:423–428.Google Scholar
  397. 397.
    Wedekind, J.E. and McKay, D.B. (1999) Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat. Struct. Biol. 6:261–268.Google Scholar
  398. 398.
    Wedekind, J.E. and McKay, D.B. (2003) Crystal structure of the leadzyme at 1.8 Å resolution: metal ion binding and the implications for catalytic mechanism and allo site ion regulation. Biochemistry 42:9554–9563.Google Scholar
  399. 399.
    Legault, P., Hoogstraten, C.G., Metlitzky, E. and Pardi, A. (1998) Order, dynamics and metal-binding in the lead-dependent ribozyme. J. Mol. Biol. 284:325–335.Google Scholar
  400. 400.
    Hoogstraten, C.G., Legault, P. and Pardi, A. (1998) NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J. Mol. Biol. 284:337–350.Google Scholar
  401. 401.
    Serganov, A., Keiper, S., Malinina, L., Tereshko, V., Skripkin, E., Höbartner, C., Polonskaia, A., Phan, A.T., Wombacher, R., Micura, R., Dauter, Z., Jäschke, A. and Patel, D.J. (2005) Structural basis for Diels–Alder ribozyme-catalyzed carbon–carbon bond formation. Nat. Struct. Mol. Biol. 12:218–224.Google Scholar
  402. 402.
    Robertson, M.P. and Scott, W.G. (2007) The structural basis of ribozyme-catalyzed RNA assembly. Science 315:1549–1553.Google Scholar
  403. 403.
    Rogers, J. and Joyce, G.F. (1999) A ribozyme that lacks cytidine. Nature (Lond.) 402:323–325.Google Scholar
  404. 404.
    Rogers, J. and Joyce, G.F. (2001) The effect of cytidine on the structure and function of an RNA ligase ribozyme. RNA 7:395–404.Google Scholar
  405. 405.
    Reader, J.S. and Joyce, G.F. (2002) A ribozyme composed of only two different nucleotides. Nature (Lond.) 420:841–844.Google Scholar
  406. 406.
    Schultes, E.A. and Bartel, D.P. (2000) One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289:448–452.Google Scholar
  407. 407.
    Pieken, W.A., Olsen, D.B., Benseler, F., Aurup, H. and Eckstein, F. (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253:314–317.Google Scholar
  408. 408.
    Cech, T.R. (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236:1532–1539.Google Scholar
  409. 409.
    Breaker, R.R. and Joyce, G.F. (1994) A DNA enzyme that cleaves RNA. Chem. Biol. 1:223–229.Google Scholar
  410. 410.
    Santoro, S.W., Joyce, G.F., Sakthivel, K., Gramatikova, S. and Barbas, C.F., III. (2000) RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122:2433–2439.Google Scholar
  411. 411.
    Perrin, D.M., Garestier, T. and Hélène, C. (2001) Bridging the gap between proteins and nucleic acids: a metal-independent RNAseA mimic with two protein-like functionalities. J. Am. Chem. Soc. 123:1556–1563.Google Scholar
  412. 412.
    Sidorov, A.V., Grasby, J.A. and Williams, D.M. (2004) Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res. 32:1591–1601.Google Scholar
  413. 413.
    Thum, O., Jager, S. and Famulok, M. (2001) Functionalized DNA: a new replicable biopoly-mer. Angew. Chem. Int. Ed. 40:3990–3993.Google Scholar
  414. 414.
    Liu, Y. and Sen, D. (2004) Light-regulated catalysis by an RNA-cleaving deoxyribozyme. J. Mol. Biol. 341:887–892.Google Scholar
  415. 415.
    Keiper, S. and Vyle, J.S. (2006) Reversible photocontrol of deoxyribozyme-catalyzed RNA cleavage under multiple-turnover conditions. Angew. Chem. Int. Ed. 45:3306–3309.Google Scholar
  416. 416.
    Bruesehoff, P.J., Li, J., Augustine, A.J., III and Lu, Y. (2002) Improving metal ion specificity during in vitro selection of catalytic DNA. Comb. Chem. High Throughput Screen. 5:327–335.Google Scholar
  417. 417.
    Williams, K.P. and Bartel, D.P. (1995) PCR product with strands of unequal length. Nucleic Acids Res. 23:4220–4221.Google Scholar
  418. 418.
    Sheppard, T.L., Ordoukhanian, P. and Joyce, G.F. (2000) A DNA enzyme with N-glycosylase activity. Proc. Natl. Acad. Sci. USA 97:7802–7807.Google Scholar
  419. 419.
    Flynn-Charlebois, A., Wang, Y., Prior, T.K., Rashid, I., Hoadley, K.A., Coppins, R.L., Wolf, A.C. and Silverman, S.K. (2003) Deoxyribozymes with 2′-5′ RNA ligase activity. J. Am. Chem. Soc. 125:2444–2454.Google Scholar
  420. 420.
    Breaker, R.R. and Joyce, G.F. (1995) A DNA enzyme with Mg2+-dependent RNA phosphoe-sterase activity. Chem. Biol. 2:655–660.Google Scholar
  421. 421.
    Santoro, S.W. and Joyce, G.F. (1997) A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94:4262–4266.Google Scholar
  422. 422.
    Geyer, C.R. and Sen, D. (1997) Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem. Biol. 4:579–593.Google Scholar
  423. 423.
    Hoadley, K.A., Purtha, W.E., Wolf, A.C., Flynn-Charlebois, A. and Silverman, S.K. (2005) Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages. Biochemistry 44:9217–9231.Google Scholar
  424. 424.
    Purtha, W.E., Coppins, R.L., Smalley, M.K. and Silverman, S.K. (2005) General deoxyribozyme-catalyzed synthesis of native 3′–5′ RNA linkages. J. Am. Chem. Soc. 127:13124–13125.Google Scholar
  425. 425.
    Wang, Y. and Silverman, S.K. (2003) Deoxyribozymes that synthesize branched and lariat RNA. J. Am. Chem. Soc. 125:6880–6881.Google Scholar
  426. 426.
    Coppins, R.L. and Silverman, S.K. (2005) A deoxyribozyme that forms a three-helix-junction complex with its RNA substrates and has general RNA branch-forming activity. J. Am. Chem. Soc. 127:2900–2907.Google Scholar
  427. 427.
    Wang, Y. and Silverman, S.K. (2005) Efficient one-step synthesis of biologically related lariat RNAs by a deoxyribozyme. Angew. Chem. Int. Ed. 44:5863–5866.Google Scholar
  428. 428.
    Wang, W., Billen, L.P. and Li, Y. (2002) Sequence diversity, metal specificity, and catalytic proficiency of metal-dependent phosphorylating DNA enzymes. Chem. Biol. 9:507–517.Google Scholar
  429. 429.
    Li, Y., Liu, Y. and Breaker, R.R. (2000) Capping DNA with DNA. Biochemistry 39:3106–3114.Google Scholar
  430. 430.
    Cuenoud, B. and Szostak, J.W. (1995) A DNA metalloenzyme with DNA ligase activity. Nature (Lond.) 375:611–614.Google Scholar
  431. 431.
    Sreedhara, A., Li, Y. and Breaker, R.R. (2004) Ligating DNA with DNA. J. Am. Chem. Soc. 126:3454–3460.Google Scholar
  432. 432.
    Carmi, N., Shultz, L.A. and Breaker, R.R. (1996) In vitro selection of self-cleaving DNAs. Chem. Biol. 3:1039–1046.Google Scholar
  433. 433.
    Carmi, N., Balkhi, S.R. and Breaker, R.R. (1998) Cleaving DNA with DNA. Proc. Natl. Acad. Sci. USA 95:2233–2237.Google Scholar
  434. 434.
    Chinnapen, D.J. and Sen, D. (2004) A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc. Natl. Acad. Sci. USA 101:65–69.Google Scholar
  435. 435.
    Burmeister, J., von Kiedrowski, G. and Ellington, A.D. (1997) Cofactor-assisted self-cleavage in DNA libraries with a 3′-5′ phosphoramidate bond. Angew. Chem. Int. Ed. Engl. 36:1321–1324.Google Scholar
  436. 436.
    Li, Y. and Sen, D. (1996) A catalytic DNA for porphyrin metallation. Nat. Struct. Biol. 3:743–747.Google Scholar
  437. 437.
    Silverman, S.K. (2005) In vitro selection, characterization, and application of deoxyri-bozymes that cleave RNA. Nucleic Acids Res. 33:6151–6163.Google Scholar
  438. 438.
    Santoro, S.W. and Joyce, G.F. (1998) Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37:13330–13342.Google Scholar
  439. 439.
    Brown, A.K., Li, J., Pavot, C.M. and Lu, Y. (2003) A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42:7152–7161.Google Scholar
  440. 440.
    Roth, A. and Breaker, R.R. (1998) An amino acid as a cofactor for a catalytic polynucle-otide. Proc. Natl. Acad. Sci. USA 95:6027–6031.Google Scholar
  441. 441.
    Nowakowski, J., Shim, P.J., Prasad, G.S., Stout, C.D. and Joyce, G.F. (1999) Crystal structure of an 82-nucleotide RNA–DNA complex formed by the 10–23 DNA enzyme. Nat. Struct. Biol. 6:151–156.Google Scholar
  442. 442.
    Paul, N., Springsteen, G. and Joyce, G.F. (2006) Conversion of a ribozyme to a deoxyri-bozyme through in vitro evolution. Chem. Biol. 13:329–338.Google Scholar
  443. 443.
    Robertson, M.P. and Ellington, A.D. (1999) In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechnol. 17:62–66.Google Scholar
  444. 444.
    Tang, J. and Breaker, R.R. (1997) Rational design of allosteric ribozymes. Chem. Biol. 4:453–459.Google Scholar
  445. 445.
    Araki, M., Okuno, Y., Hara, Y. and Sugiura, Y. (1998) Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26:3379–3384.Google Scholar
  446. 446.
    Soukup, G.A. and Breaker, R.R. (1999) Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure 7:783–791.Google Scholar
  447. 447.
    Vaish, N.K., Dong, F., Andrews, L., Schweppe, R.E., Ahn, N.G., Blatt, L. and Seiwert, S.D. (2002) Monitoring post-translational modification of proteins with allosteric ribozymes. Nat. Biotechnol. 20:810–815.Google Scholar
  448. 448.
    Wang, D.Y. and Sen, D. (2002) Rationally designed allosteric variants of hammerhead ribozymes responsive to the HIV-1 Tat protein. Comb. Chem. High Throughput Screen. 5:301–312.Google Scholar
  449. 449.
    Kertsburg, A. and Soukup, G.A. (2002) A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res. 30:4599–4606.Google Scholar
  450. 450.
    Hartig, J.S., Najafi-Shoushtari, S.H., Grune, I., Yan, A., Ellington, A.D. and Famulok, M. (2002) Protein-dependent ribozymes report molecular interactions in real time. Nat. Biotechnol. 20:717–722.Google Scholar
  451. 451.
    Thompson, K.M., Syrett, H.A., Knudsen, S.M. and Ellington, A.D. (2002) Group I aptazymes as genetic regulatory switches. BMC Biotechnol. 2:21.Google Scholar
  452. 452.
    Silverman, S.K. (2003) Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9:377–383.Google Scholar
  453. 453.
    Jose, A.M., Soukup, G.A. and Breaker, R.R. (2001) Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res. 29:1631–1637.Google Scholar
  454. 454.
    Cho, S., Kim, J.E., Lee, B.R., Kim, J.H. and Kim, B.G. (2005) Bis-aptazyme sensors for hepatitis C virus replicase and helicase without blank signal. Nucleic Acids Res. 33:e177.Google Scholar
  455. 455.
    Soukup, G.A. and Breaker, R.R. (1999) Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96:3584–3589.Google Scholar
  456. 456.
    Robertson, M.P. and Ellington, A.D. (2000) Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 28:1751–1759.Google Scholar
  457. 457.
    Soukup, G.A., Emilsson, G.A. and Breaker, R.R. (2000) Altering molecular recognition of RNA aptamers by allosteric selection. J. Mol. Biol. 298:623–632.Google Scholar
  458. 458.
    Srinivasan, J., Cload, S.T., Hamaguchi, N., Kurz, J., Keene, S., Kurz, M., Boomer, R.M., Blanchard, J., Epstein, D., Wilson, C. and Diener, J.L. (2004) ADP-specific sensors enable universal assay of protein kinase activity. Chem. Biol. 11:499–508.Google Scholar
  459. 459.
    Levy, M. and Ellington, A.D. (2002) ATP-dependent allosteric DNA enzymes. Chem. Biol. 9:417–426.Google Scholar
  460. 460.
    Wang, D.Y., Lai, B.H. and Sen, D. (2002) A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. J. Mol. Biol. 318:33–43.Google Scholar
  461. 461.
    Liu, J. and Lu, Y. (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem. 76:1627–1632.Google Scholar
  462. 462.
    Achenbach, J.C., Nutiu, R. and Li, Y. (2005) Structure-switching allosteric deoxyribozymes. Anal. Chim. Acta 534:41–51.Google Scholar
  463. 463.
    Shen, Y., Chiuman, W., Brennan, J.D. and Li, Y. (2006) Catalysis and rational engineering of trans-acting pH6DZ1, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure. ChemBioChem 7:1343–1348.Google Scholar
  464. 464.
    Koizumi, M., Soukup, G.A., Kerr, J.N. and Breaker, R.R. (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6:1062–1071.Google Scholar
  465. 465.
    Zivarts, M., Liu, Y. and Breaker, R.R. (2005) Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res. 33:622–631.Google Scholar
  466. 466.
    Ferguson, A., Boomer, R.M., Kurz, M., Keene, S.C., Diener, J.L., Keefe, A.D., Wilson, C. and Cload, S.T. (2004) A novel strategy for selection of allosteric ribozymes yields RiboReporter sensors for caffeine and aspartame. Nucleic Acids Res. 32:1756–1766.Google Scholar
  467. 467.
    Piganeau, N., Jenne, A., Thuillier, V. and Famulok, M. (2000) An allosteric ribozyme regulated by doxycycline. Angew. Chem. Int. Ed. 39:4369–4373.Google Scholar
  468. 468.
    Piganeau, N., Thuillier, V. and Famulok, M. (2001) In vitro selection of allosteric ribozymes: theory and experimental validation. J. Mol. Biol. 312:1177–1190.Google Scholar
  469. 469.
    Seetharaman, S., Zivarts, M., Sudarsan, N. and Breaker, R.R. (2001) Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat. Biotechnol. 19:336–341.Google Scholar
  470. 470.
    Robertson, M.P. and Ellington, A.D. (2001) In vitro selection of nucleoprotein enzymes. Nat. Biotechnol. 19:650–655.Google Scholar
  471. 471.
    Soukup, G.A., DeRose, E.C., Koizumi, M. and Breaker, R.R. (2001) Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7:524–536.Google Scholar
  472. 472.
    Batey, R.T., Gilbert, S.D. and Montange, R.K. (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature (Lond.) 432:411–415.Google Scholar
  473. 473.
    Serganov, A., Yuan, Y.R., Pikovskaya, O., Polonskaia, A., Malinina, L., Phan, A.T., Hobartner, C., Micura, R., Breaker, R.R. and Patel, D.J. (2004) Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11:1729–1741.Google Scholar
  474. 474.
    Tang, J. and Breaker, R.R. (1998) Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Res. 26:4214–4221.Google Scholar
  475. 475.
    Suess, B., Fink, B., Berens, C., Stentz, R. and Hillen, W. (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 32:1610, 1614.Google Scholar
  476. 476.
    Hall, B., Hesselberth, J.R. and Ellington, A.D. (2007) Computational selection of nucleic acid biosensors via a slip structure model. Biosens. Bioelectron. 22:1939–1747.Google Scholar
  477. 477.
    Atsumi, S., Ikawa, Y., Shiraishi, H. and Inoue, T. (2001) Design and development of a catalytic ribonucleoprotein. EMBO J. 20:5453–5460.Google Scholar
  478. 478.
    Kuwabara, T., Warashina, M., Tanabe, T., Tani, K., Asano, S., Taira, K. (1998) A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol. Cell 2:617–627.Google Scholar
  479. 479.
    Komatsu, Y., Yamashita, S., Kazama, N., Nobuoka, K. and Ohtsuka, E. (2000) Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor. J. Mol. Biol. 299:1231–1243.Google Scholar
  480. 480.
    Wang, D.Y. and Sen, D. (2001) A novel mode of regulation of an RNA-cleaving DNAzyme by effectors that bind to both enzyme and substrate. J. Mol. Biol. 310:723–734.Google Scholar
  481. 481.
    Wang, D.Y., Lai, B.H., Feldman, A.R. and Sen, D. (2002) A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. Nucleic Acids Res. 30:1735–1742.Google Scholar
  482. 482.
    Burke, D.H., Ozerova, N.D. and Nilsen-Hamilton, M. (2002) Allosteric hammerhead ribozyme TRAPs. Biochemistry 41:6588–6594.Google Scholar
  483. 483.
    Najafi-Shoushtari, S.H., Mayer, G. and Famulok, M. (2004) Sensing complex regulatory networks by conformationally controlled hairpin ribozymes. Nucleic Acids Res. 32:3212–3219.Google Scholar
  484. 484.
    Penchovsky, R. and Breaker, R.R. (2005) Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23:1424–1433.Google Scholar
  485. 485.
    Najafi-Shoushtari, S.H. and Famulok, M. (2005) Competitive regulation of modular allos-teric aptazymes by a small molecule and oligonucleotide effector. RNA 11:1514–1520.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Scott K. Silverman
    • 1
  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUSA

Personalised recommendations